Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjord | Structured version Visualization version GIF version |
Description: Conditions for a collection of sets 𝐴(𝑎) for 𝑎 ∈ 𝑉 to be disjoint. (Contributed by AV, 9-Jan-2022.) |
Ref | Expression |
---|---|
disjord.1 | ⊢ (𝑎 = 𝑏 → 𝐴 = 𝐵) |
disjord.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑎 = 𝑏) |
Ref | Expression |
---|---|
disjord | ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 863 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) | |
2 | 1 | a1d 25 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝜑 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅))) |
3 | disjord.2 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑎 = 𝑏) | |
4 | 3 | 3expia 1119 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 → 𝑎 = 𝑏)) |
5 | 4 | con3d 152 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑎 = 𝑏 → ¬ 𝑥 ∈ 𝐵)) |
6 | 5 | impancom 451 | . . . . . . . . 9 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
7 | 6 | ralrimiv 3106 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
8 | disj 4378 | . . . . . . . 8 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
9 | 7, 8 | sylibr 233 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝐴 ∩ 𝐵) = ∅) |
10 | 9 | olcd 870 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
11 | 10 | expcom 413 | . . . . 5 ⊢ (¬ 𝑎 = 𝑏 → (𝜑 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅))) |
12 | 2, 11 | pm2.61i 182 | . . . 4 ⊢ (𝜑 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
14 | 13 | ralrimivva 3114 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
15 | disjord.1 | . . 3 ⊢ (𝑎 = 𝑏 → 𝐴 = 𝐵) | |
16 | 15 | disjor 5050 | . 2 ⊢ (Disj 𝑎 ∈ 𝑉 𝐴 ↔ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
17 | 14, 16 | sylibr 233 | 1 ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ∅c0 4253 Disj wdisj 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rmo 3071 df-v 3424 df-dif 3886 df-in 3890 df-nul 4254 df-disj 5036 |
This theorem is referenced by: 2wspdisj 28228 |
Copyright terms: Public domain | W3C validator |