MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjord Structured version   Visualization version   GIF version

Theorem disjord 5155
Description: Conditions for a collection of sets 𝐴(𝑎) for 𝑎𝑉 to be disjoint. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
disjord.1 (𝑎 = 𝑏𝐴 = 𝐵)
disjord.2 ((𝜑𝑥𝐴𝑥𝐵) → 𝑎 = 𝑏)
Assertion
Ref Expression
disjord (𝜑Disj 𝑎𝑉 𝐴)
Distinct variable groups:   𝐴,𝑏,𝑥   𝐵,𝑎,𝑥   𝑉,𝑎,𝑏,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑎)   𝐵(𝑏)

Proof of Theorem disjord
StepHypRef Expression
1 orc 866 . . . . . 6 (𝑎 = 𝑏 → (𝑎 = 𝑏 ∨ (𝐴𝐵) = ∅))
21a1d 25 . . . . 5 (𝑎 = 𝑏 → (𝜑 → (𝑎 = 𝑏 ∨ (𝐴𝐵) = ∅)))
3 disjord.2 . . . . . . . . . . . 12 ((𝜑𝑥𝐴𝑥𝐵) → 𝑎 = 𝑏)
433expia 1121 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑥𝐵𝑎 = 𝑏))
54con3d 152 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (¬ 𝑎 = 𝑏 → ¬ 𝑥𝐵))
65impancom 451 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝑥𝐴 → ¬ 𝑥𝐵))
76ralrimiv 3151 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑎 = 𝑏) → ∀𝑥𝐴 ¬ 𝑥𝐵)
8 disj 4473 . . . . . . . 8 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
97, 8sylibr 234 . . . . . . 7 ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐵) = ∅)
109olcd 873 . . . . . 6 ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝑎 = 𝑏 ∨ (𝐴𝐵) = ∅))
1110expcom 413 . . . . 5 𝑎 = 𝑏 → (𝜑 → (𝑎 = 𝑏 ∨ (𝐴𝐵) = ∅)))
122, 11pm2.61i 182 . . . 4 (𝜑 → (𝑎 = 𝑏 ∨ (𝐴𝐵) = ∅))
1312adantr 480 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 = 𝑏 ∨ (𝐴𝐵) = ∅))
1413ralrimivva 3208 . 2 (𝜑 → ∀𝑎𝑉𝑏𝑉 (𝑎 = 𝑏 ∨ (𝐴𝐵) = ∅))
15 disjord.1 . . 3 (𝑎 = 𝑏𝐴 = 𝐵)
1615disjor 5148 . 2 (Disj 𝑎𝑉 𝐴 ↔ ∀𝑎𝑉𝑏𝑉 (𝑎 = 𝑏 ∨ (𝐴𝐵) = ∅))
1714, 16sylibr 234 1 (𝜑Disj 𝑎𝑉 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cin 3975  c0 4352  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rmo 3388  df-v 3490  df-dif 3979  df-in 3983  df-nul 4353  df-disj 5134
This theorem is referenced by:  2wspdisj  29995
  Copyright terms: Public domain W3C validator