| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjord | Structured version Visualization version GIF version | ||
| Description: Conditions for a collection of sets 𝐴(𝑎) for 𝑎 ∈ 𝑉 to be disjoint. (Contributed by AV, 9-Jan-2022.) |
| Ref | Expression |
|---|---|
| disjord.1 | ⊢ (𝑎 = 𝑏 → 𝐴 = 𝐵) |
| disjord.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑎 = 𝑏) |
| Ref | Expression |
|---|---|
| disjord | ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) | |
| 2 | 1 | a1d 25 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝜑 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅))) |
| 3 | disjord.2 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑎 = 𝑏) | |
| 4 | 3 | 3expia 1121 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 → 𝑎 = 𝑏)) |
| 5 | 4 | con3d 152 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑎 = 𝑏 → ¬ 𝑥 ∈ 𝐵)) |
| 6 | 5 | impancom 451 | . . . . . . . . 9 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 7 | 6 | ralrimiv 3132 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| 8 | disj 4430 | . . . . . . . 8 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
| 9 | 7, 8 | sylibr 234 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝐴 ∩ 𝐵) = ∅) |
| 10 | 9 | olcd 874 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
| 11 | 10 | expcom 413 | . . . . 5 ⊢ (¬ 𝑎 = 𝑏 → (𝜑 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅))) |
| 12 | 2, 11 | pm2.61i 182 | . . . 4 ⊢ (𝜑 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
| 14 | 13 | ralrimivva 3188 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
| 15 | disjord.1 | . . 3 ⊢ (𝑎 = 𝑏 → 𝐴 = 𝐵) | |
| 16 | 15 | disjor 5106 | . 2 ⊢ (Disj 𝑎 ∈ 𝑉 𝐴 ↔ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
| 17 | 14, 16 | sylibr 234 | 1 ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∩ cin 3930 ∅c0 4313 Disj wdisj 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rmo 3364 df-v 3466 df-dif 3934 df-in 3938 df-nul 4314 df-disj 5092 |
| This theorem is referenced by: 2wspdisj 29949 |
| Copyright terms: Public domain | W3C validator |