MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3iunsndisj Structured version   Visualization version   GIF version

Theorem s3iunsndisj 14514
Description: The union of singletons consisting of length 3 strings which have distinct first and third symbols are disjunct. (Contributed by AV, 17-May-2021.)
Assertion
Ref Expression
s3iunsndisj (𝐵𝑋Disj 𝑎𝑌 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩})
Distinct variable groups:   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐   𝐵,𝑎,𝑐   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎

Proof of Theorem s3iunsndisj
Dummy variables 𝑑 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 867 . . . . 5 (𝑎 = 𝑑 → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
21a1d 25 . . . 4 (𝑎 = 𝑑 → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅)))
3 eliun 4898 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ↔ ∃𝑐 ∈ (𝑍 ∖ {𝑎})𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩})
4 velsn 4547 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩} ↔ 𝑠 = ⟨“𝑎𝐵𝑐”⟩)
5 eqeq1 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ ↔ ⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩))
65adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) ∧ 𝑠 = ⟨“𝑎𝐵𝑐”⟩) → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ ↔ ⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩))
7 s3cli 14429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ⟨“𝑎𝐵𝑐”⟩ ∈ Word V
8 elex 3419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐵𝑋𝐵 ∈ V)
9 elex 3419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑑𝑌𝑑 ∈ V)
109adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑎𝑌𝑑𝑌) → 𝑑 ∈ V)
118, 10anim12ci 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑑 ∈ V ∧ 𝐵 ∈ V))
12 elex 3419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑒 ∈ (𝑍 ∖ {𝑑}) → 𝑒 ∈ V)
1312adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → 𝑒 ∈ V)
1411, 13anim12i 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → ((𝑑 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑒 ∈ V))
15 df-3an 1091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ V ∧ 𝐵 ∈ V ∧ 𝑒 ∈ V) ↔ ((𝑑 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑒 ∈ V))
1614, 15sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → (𝑑 ∈ V ∧ 𝐵 ∈ V ∧ 𝑒 ∈ V))
17 eqwrds3 14511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨“𝑎𝐵𝑐”⟩ ∈ Word V ∧ (𝑑 ∈ V ∧ 𝐵 ∈ V ∧ 𝑒 ∈ V)) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ ↔ ((♯‘⟨“𝑎𝐵𝑐”⟩) = 3 ∧ ((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒))))
187, 16, 17sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ ↔ ((♯‘⟨“𝑎𝐵𝑐”⟩) = 3 ∧ ((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒))))
19 s3fv0 14439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 ∈ V → (⟨“𝑎𝐵𝑐”⟩‘0) = 𝑎)
2019elv 3407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨“𝑎𝐵𝑐”⟩‘0) = 𝑎
21 simp1 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒) → (⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑)
2220, 21eqtr3id 2788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒) → 𝑎 = 𝑑)
2322adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((♯‘⟨“𝑎𝐵𝑐”⟩) = 3 ∧ ((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒)) → 𝑎 = 𝑑)
2418, 23syl6bi 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
2524adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) ∧ 𝑠 = ⟨“𝑎𝐵𝑐”⟩) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
266, 25sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) ∧ 𝑠 = ⟨“𝑎𝐵𝑐”⟩) → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
2726ancoms 462 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 = ⟨“𝑎𝐵𝑐”⟩ ∧ ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})))) → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
2827con3d 155 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 = ⟨“𝑎𝐵𝑐”⟩ ∧ ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})))) → (¬ 𝑎 = 𝑑 → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))
2928exp32 424 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → (¬ 𝑎 = 𝑑 → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3029com14 96 . . . . . . . . . . . . . . . . . . . . 21 𝑎 = 𝑑 → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3130imp 410 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)))
3231expd 419 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑐 ∈ (𝑍 ∖ {𝑎}) → (𝑒 ∈ (𝑍 ∖ {𝑑}) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3332com34 91 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑐 ∈ (𝑍 ∖ {𝑎}) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3433imp 410 . . . . . . . . . . . . . . . . 17 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)))
354, 34syl5bi 245 . . . . . . . . . . . . . . . 16 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) → (𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩} → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)))
3635imp 410 . . . . . . . . . . . . . . 15 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))
3736imp 410 . . . . . . . . . . . . . 14 (((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)
38 velsn 4547 . . . . . . . . . . . . . 14 (𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩} ↔ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)
3937, 38sylnibr 332 . . . . . . . . . . . . 13 (((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → ¬ 𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩})
4039nrexdv 3182 . . . . . . . . . . . 12 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) → ¬ ∃𝑒 ∈ (𝑍 ∖ {𝑑})𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩})
41 eliun 4898 . . . . . . . . . . . 12 (𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩} ↔ ∃𝑒 ∈ (𝑍 ∖ {𝑑})𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩})
4240, 41sylnibr 332 . . . . . . . . . . 11 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) → ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
4342rexlimdva2 3199 . . . . . . . . . 10 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (∃𝑐 ∈ (𝑍 ∖ {𝑎})𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩} → ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩}))
443, 43syl5bi 245 . . . . . . . . 9 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} → ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩}))
4544ralrimiv 3097 . . . . . . . 8 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
46 eqidd 2735 . . . . . . . . . . . . . 14 (𝑐 = 𝑒𝑑 = 𝑑)
47 eqidd 2735 . . . . . . . . . . . . . 14 (𝑐 = 𝑒𝐵 = 𝐵)
48 id 22 . . . . . . . . . . . . . 14 (𝑐 = 𝑒𝑐 = 𝑒)
4946, 47, 48s3eqd 14412 . . . . . . . . . . . . 13 (𝑐 = 𝑒 → ⟨“𝑑𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩)
5049sneqd 4543 . . . . . . . . . . . 12 (𝑐 = 𝑒 → {⟨“𝑑𝐵𝑐”⟩} = {⟨“𝑑𝐵𝑒”⟩})
5150cbviunv 4939 . . . . . . . . . . 11 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} = 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩}
5251eleq2i 2825 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} ↔ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
5352notbii 323 . . . . . . . . 9 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} ↔ ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
5453ralbii 3081 . . . . . . . 8 (∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} ↔ ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
5545, 54sylibr 237 . . . . . . 7 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩})
56 disj 4352 . . . . . . 7 (( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅ ↔ ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩})
5755, 56sylibr 237 . . . . . 6 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅)
5857olcd 874 . . . . 5 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
5958ex 416 . . . 4 𝑎 = 𝑑 → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅)))
602, 59pm2.61i 185 . . 3 ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
6160ralrimivva 3105 . 2 (𝐵𝑋 → ∀𝑎𝑌𝑑𝑌 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
62 sneq 4541 . . . 4 (𝑎 = 𝑑 → {𝑎} = {𝑑})
6362difeq2d 4027 . . 3 (𝑎 = 𝑑 → (𝑍 ∖ {𝑎}) = (𝑍 ∖ {𝑑}))
64 id 22 . . . . 5 (𝑎 = 𝑑𝑎 = 𝑑)
65 eqidd 2735 . . . . 5 (𝑎 = 𝑑𝐵 = 𝐵)
66 eqidd 2735 . . . . 5 (𝑎 = 𝑑𝑐 = 𝑐)
6764, 65, 66s3eqd 14412 . . . 4 (𝑎 = 𝑑 → ⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑐”⟩)
6867sneqd 4543 . . 3 (𝑎 = 𝑑 → {⟨“𝑎𝐵𝑐”⟩} = {⟨“𝑑𝐵𝑐”⟩})
6963, 68disjiunb 5032 . 2 (Disj 𝑎𝑌 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ↔ ∀𝑎𝑌𝑑𝑌 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
7061, 69sylibr 237 1 (𝐵𝑋Disj 𝑎𝑌 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wral 3054  wrex 3055  Vcvv 3401  cdif 3854  cin 3856  c0 4227  {csn 4531   ciun 4894  Disj wdisj 5008  cfv 6369  0cc0 10712  1c1 10713  2c2 11868  3c3 11869  chash 13879  Word cword 14052  ⟨“cs3 14390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-disj 5009  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-concat 14109  df-s1 14136  df-s2 14396  df-s3 14397
This theorem is referenced by:  fusgreghash2wspv  28390
  Copyright terms: Public domain W3C validator