MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3iunsndisj Structured version   Visualization version   GIF version

Theorem s3iunsndisj 14677
Description: The union of singletons consisting of length 3 strings which have distinct first and third symbols are disjunct. (Contributed by AV, 17-May-2021.)
Assertion
Ref Expression
s3iunsndisj (𝐵𝑋Disj 𝑎𝑌 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩})
Distinct variable groups:   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐   𝐵,𝑎,𝑐   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎

Proof of Theorem s3iunsndisj
Dummy variables 𝑑 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 864 . . . . 5 (𝑎 = 𝑑 → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
21a1d 25 . . . 4 (𝑎 = 𝑑 → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅)))
3 eliun 4934 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ↔ ∃𝑐 ∈ (𝑍 ∖ {𝑎})𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩})
4 velsn 4583 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩} ↔ 𝑠 = ⟨“𝑎𝐵𝑐”⟩)
5 eqeq1 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ ↔ ⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩))
65adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) ∧ 𝑠 = ⟨“𝑎𝐵𝑐”⟩) → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ ↔ ⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩))
7 s3cli 14592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ⟨“𝑎𝐵𝑐”⟩ ∈ Word V
8 elex 3449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐵𝑋𝐵 ∈ V)
9 elex 3449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑑𝑌𝑑 ∈ V)
109adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑎𝑌𝑑𝑌) → 𝑑 ∈ V)
118, 10anim12ci 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑑 ∈ V ∧ 𝐵 ∈ V))
12 elex 3449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑒 ∈ (𝑍 ∖ {𝑑}) → 𝑒 ∈ V)
1312adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → 𝑒 ∈ V)
1411, 13anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → ((𝑑 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑒 ∈ V))
15 df-3an 1088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ V ∧ 𝐵 ∈ V ∧ 𝑒 ∈ V) ↔ ((𝑑 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑒 ∈ V))
1614, 15sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → (𝑑 ∈ V ∧ 𝐵 ∈ V ∧ 𝑒 ∈ V))
17 eqwrds3 14674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨“𝑎𝐵𝑐”⟩ ∈ Word V ∧ (𝑑 ∈ V ∧ 𝐵 ∈ V ∧ 𝑒 ∈ V)) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ ↔ ((♯‘⟨“𝑎𝐵𝑐”⟩) = 3 ∧ ((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒))))
187, 16, 17sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ ↔ ((♯‘⟨“𝑎𝐵𝑐”⟩) = 3 ∧ ((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒))))
19 s3fv0 14602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 ∈ V → (⟨“𝑎𝐵𝑐”⟩‘0) = 𝑎)
2019elv 3437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨“𝑎𝐵𝑐”⟩‘0) = 𝑎
21 simp1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒) → (⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑)
2220, 21eqtr3id 2794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒) → 𝑎 = 𝑑)
2322adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((♯‘⟨“𝑎𝐵𝑐”⟩) = 3 ∧ ((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒)) → 𝑎 = 𝑑)
2418, 23syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
2524adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) ∧ 𝑠 = ⟨“𝑎𝐵𝑐”⟩) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
266, 25sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) ∧ 𝑠 = ⟨“𝑎𝐵𝑐”⟩) → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
2726ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 = ⟨“𝑎𝐵𝑐”⟩ ∧ ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})))) → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
2827con3d 152 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 = ⟨“𝑎𝐵𝑐”⟩ ∧ ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})))) → (¬ 𝑎 = 𝑑 → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))
2928exp32 421 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → (¬ 𝑎 = 𝑑 → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3029com14 96 . . . . . . . . . . . . . . . . . . . . 21 𝑎 = 𝑑 → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3130imp 407 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)))
3231expd 416 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑐 ∈ (𝑍 ∖ {𝑎}) → (𝑒 ∈ (𝑍 ∖ {𝑑}) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3332com34 91 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑐 ∈ (𝑍 ∖ {𝑎}) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3433imp 407 . . . . . . . . . . . . . . . . 17 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)))
354, 34syl5bi 241 . . . . . . . . . . . . . . . 16 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) → (𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩} → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)))
3635imp 407 . . . . . . . . . . . . . . 15 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))
3736imp 407 . . . . . . . . . . . . . 14 (((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)
38 velsn 4583 . . . . . . . . . . . . . 14 (𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩} ↔ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)
3937, 38sylnibr 329 . . . . . . . . . . . . 13 (((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → ¬ 𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩})
4039nrexdv 3200 . . . . . . . . . . . 12 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) → ¬ ∃𝑒 ∈ (𝑍 ∖ {𝑑})𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩})
41 eliun 4934 . . . . . . . . . . . 12 (𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩} ↔ ∃𝑒 ∈ (𝑍 ∖ {𝑑})𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩})
4240, 41sylnibr 329 . . . . . . . . . . 11 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) → ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
4342rexlimdva2 3218 . . . . . . . . . 10 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (∃𝑐 ∈ (𝑍 ∖ {𝑎})𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩} → ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩}))
443, 43syl5bi 241 . . . . . . . . 9 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} → ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩}))
4544ralrimiv 3109 . . . . . . . 8 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
46 eqidd 2741 . . . . . . . . . . . . . 14 (𝑐 = 𝑒𝑑 = 𝑑)
47 eqidd 2741 . . . . . . . . . . . . . 14 (𝑐 = 𝑒𝐵 = 𝐵)
48 id 22 . . . . . . . . . . . . . 14 (𝑐 = 𝑒𝑐 = 𝑒)
4946, 47, 48s3eqd 14575 . . . . . . . . . . . . 13 (𝑐 = 𝑒 → ⟨“𝑑𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩)
5049sneqd 4579 . . . . . . . . . . . 12 (𝑐 = 𝑒 → {⟨“𝑑𝐵𝑐”⟩} = {⟨“𝑑𝐵𝑒”⟩})
5150cbviunv 4975 . . . . . . . . . . 11 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} = 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩}
5251eleq2i 2832 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} ↔ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
5352notbii 320 . . . . . . . . 9 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} ↔ ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
5453ralbii 3093 . . . . . . . 8 (∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} ↔ ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
5545, 54sylibr 233 . . . . . . 7 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩})
56 disj 4387 . . . . . . 7 (( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅ ↔ ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩})
5755, 56sylibr 233 . . . . . 6 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅)
5857olcd 871 . . . . 5 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
5958ex 413 . . . 4 𝑎 = 𝑑 → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅)))
602, 59pm2.61i 182 . . 3 ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
6160ralrimivva 3117 . 2 (𝐵𝑋 → ∀𝑎𝑌𝑑𝑌 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
62 sneq 4577 . . . 4 (𝑎 = 𝑑 → {𝑎} = {𝑑})
6362difeq2d 4062 . . 3 (𝑎 = 𝑑 → (𝑍 ∖ {𝑎}) = (𝑍 ∖ {𝑑}))
64 id 22 . . . . 5 (𝑎 = 𝑑𝑎 = 𝑑)
65 eqidd 2741 . . . . 5 (𝑎 = 𝑑𝐵 = 𝐵)
66 eqidd 2741 . . . . 5 (𝑎 = 𝑑𝑐 = 𝑐)
6764, 65, 66s3eqd 14575 . . . 4 (𝑎 = 𝑑 → ⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑐”⟩)
6867sneqd 4579 . . 3 (𝑎 = 𝑑 → {⟨“𝑎𝐵𝑐”⟩} = {⟨“𝑑𝐵𝑐”⟩})
6963, 68disjiunb 5068 . 2 (Disj 𝑎𝑌 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ↔ ∀𝑎𝑌𝑑𝑌 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
7061, 69sylibr 233 1 (𝐵𝑋Disj 𝑎𝑌 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wral 3066  wrex 3067  Vcvv 3431  cdif 3889  cin 3891  c0 4262  {csn 4567   ciun 4930  Disj wdisj 5044  cfv 6432  0cc0 10872  1c1 10873  2c2 12028  3c3 12029  chash 14042  Word cword 14215  ⟨“cs3 14553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382  df-hash 14043  df-word 14216  df-concat 14272  df-s1 14299  df-s2 14559  df-s3 14560
This theorem is referenced by:  fusgreghash2wspv  28695
  Copyright terms: Public domain W3C validator