MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3iunsndisj Structured version   Visualization version   GIF version

Theorem s3iunsndisj 14915
Description: The union of singletons consisting of length 3 strings which have distinct first and third symbols are disjunct. (Contributed by AV, 17-May-2021.)
Assertion
Ref Expression
s3iunsndisj (𝐵𝑋Disj 𝑎𝑌 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩})
Distinct variable groups:   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐   𝐵,𝑎,𝑐   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎

Proof of Theorem s3iunsndisj
Dummy variables 𝑑 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 866 . . . . 5 (𝑎 = 𝑑 → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
21a1d 25 . . . 4 (𝑎 = 𝑑 → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅)))
3 eliun 5002 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ↔ ∃𝑐 ∈ (𝑍 ∖ {𝑎})𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩})
4 velsn 4645 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩} ↔ 𝑠 = ⟨“𝑎𝐵𝑐”⟩)
5 eqeq1 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ ↔ ⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩))
65adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) ∧ 𝑠 = ⟨“𝑎𝐵𝑐”⟩) → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ ↔ ⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩))
7 s3cli 14832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ⟨“𝑎𝐵𝑐”⟩ ∈ Word V
8 elex 3493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐵𝑋𝐵 ∈ V)
9 elex 3493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑑𝑌𝑑 ∈ V)
109adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑎𝑌𝑑𝑌) → 𝑑 ∈ V)
118, 10anim12ci 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑑 ∈ V ∧ 𝐵 ∈ V))
12 elex 3493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑒 ∈ (𝑍 ∖ {𝑑}) → 𝑒 ∈ V)
1312adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → 𝑒 ∈ V)
1411, 13anim12i 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → ((𝑑 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑒 ∈ V))
15 df-3an 1090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ V ∧ 𝐵 ∈ V ∧ 𝑒 ∈ V) ↔ ((𝑑 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑒 ∈ V))
1614, 15sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → (𝑑 ∈ V ∧ 𝐵 ∈ V ∧ 𝑒 ∈ V))
17 eqwrds3 14912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨“𝑎𝐵𝑐”⟩ ∈ Word V ∧ (𝑑 ∈ V ∧ 𝐵 ∈ V ∧ 𝑒 ∈ V)) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ ↔ ((♯‘⟨“𝑎𝐵𝑐”⟩) = 3 ∧ ((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒))))
187, 16, 17sylancr 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ ↔ ((♯‘⟨“𝑎𝐵𝑐”⟩) = 3 ∧ ((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒))))
19 s3fv0 14842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 ∈ V → (⟨“𝑎𝐵𝑐”⟩‘0) = 𝑎)
2019elv 3481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨“𝑎𝐵𝑐”⟩‘0) = 𝑎
21 simp1 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒) → (⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑)
2220, 21eqtr3id 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒) → 𝑎 = 𝑑)
2322adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((♯‘⟨“𝑎𝐵𝑐”⟩) = 3 ∧ ((⟨“𝑎𝐵𝑐”⟩‘0) = 𝑑 ∧ (⟨“𝑎𝐵𝑐”⟩‘1) = 𝐵 ∧ (⟨“𝑎𝐵𝑐”⟩‘2) = 𝑒)) → 𝑎 = 𝑑)
2418, 23syl6bi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
2524adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) ∧ 𝑠 = ⟨“𝑎𝐵𝑐”⟩) → (⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
266, 25sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑}))) ∧ 𝑠 = ⟨“𝑎𝐵𝑐”⟩) → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
2726ancoms 460 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 = ⟨“𝑎𝐵𝑐”⟩ ∧ ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})))) → (𝑠 = ⟨“𝑑𝐵𝑒”⟩ → 𝑎 = 𝑑))
2827con3d 152 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 = ⟨“𝑎𝐵𝑐”⟩ ∧ ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) ∧ (𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})))) → (¬ 𝑎 = 𝑑 → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))
2928exp32 422 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → (¬ 𝑎 = 𝑑 → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3029com14 96 . . . . . . . . . . . . . . . . . . . . 21 𝑎 = 𝑑 → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3130imp 408 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ((𝑐 ∈ (𝑍 ∖ {𝑎}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)))
3231expd 417 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑐 ∈ (𝑍 ∖ {𝑎}) → (𝑒 ∈ (𝑍 ∖ {𝑑}) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3332com34 91 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑐 ∈ (𝑍 ∖ {𝑎}) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))))
3433imp 408 . . . . . . . . . . . . . . . . 17 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) → (𝑠 = ⟨“𝑎𝐵𝑐”⟩ → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)))
354, 34biimtrid 241 . . . . . . . . . . . . . . . 16 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) → (𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩} → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)))
3635imp 408 . . . . . . . . . . . . . . 15 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) → (𝑒 ∈ (𝑍 ∖ {𝑑}) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩))
3736imp 408 . . . . . . . . . . . . . 14 (((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → ¬ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)
38 velsn 4645 . . . . . . . . . . . . . 14 (𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩} ↔ 𝑠 = ⟨“𝑑𝐵𝑒”⟩)
3937, 38sylnibr 329 . . . . . . . . . . . . 13 (((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) ∧ 𝑒 ∈ (𝑍 ∖ {𝑑})) → ¬ 𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩})
4039nrexdv 3150 . . . . . . . . . . . 12 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) → ¬ ∃𝑒 ∈ (𝑍 ∖ {𝑑})𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩})
41 eliun 5002 . . . . . . . . . . . 12 (𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩} ↔ ∃𝑒 ∈ (𝑍 ∖ {𝑑})𝑠 ∈ {⟨“𝑑𝐵𝑒”⟩})
4240, 41sylnibr 329 . . . . . . . . . . 11 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) ∧ 𝑐 ∈ (𝑍 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩}) → ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
4342rexlimdva2 3158 . . . . . . . . . 10 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (∃𝑐 ∈ (𝑍 ∖ {𝑎})𝑠 ∈ {⟨“𝑎𝐵𝑐”⟩} → ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩}))
443, 43biimtrid 241 . . . . . . . . 9 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} → ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩}))
4544ralrimiv 3146 . . . . . . . 8 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
46 eqidd 2734 . . . . . . . . . . . . . 14 (𝑐 = 𝑒𝑑 = 𝑑)
47 eqidd 2734 . . . . . . . . . . . . . 14 (𝑐 = 𝑒𝐵 = 𝐵)
48 id 22 . . . . . . . . . . . . . 14 (𝑐 = 𝑒𝑐 = 𝑒)
4946, 47, 48s3eqd 14815 . . . . . . . . . . . . 13 (𝑐 = 𝑒 → ⟨“𝑑𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑒”⟩)
5049sneqd 4641 . . . . . . . . . . . 12 (𝑐 = 𝑒 → {⟨“𝑑𝐵𝑐”⟩} = {⟨“𝑑𝐵𝑒”⟩})
5150cbviunv 5044 . . . . . . . . . . 11 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} = 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩}
5251eleq2i 2826 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} ↔ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
5352notbii 320 . . . . . . . . 9 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} ↔ ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
5453ralbii 3094 . . . . . . . 8 (∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩} ↔ ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑒 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑒”⟩})
5545, 54sylibr 233 . . . . . . 7 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩})
56 disj 4448 . . . . . . 7 (( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅ ↔ ∀𝑠 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ¬ 𝑠 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩})
5755, 56sylibr 233 . . . . . 6 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅)
5857olcd 873 . . . . 5 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌))) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
5958ex 414 . . . 4 𝑎 = 𝑑 → ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅)))
602, 59pm2.61i 182 . . 3 ((𝐵𝑋 ∧ (𝑎𝑌𝑑𝑌)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
6160ralrimivva 3201 . 2 (𝐵𝑋 → ∀𝑎𝑌𝑑𝑌 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
62 sneq 4639 . . . 4 (𝑎 = 𝑑 → {𝑎} = {𝑑})
6362difeq2d 4123 . . 3 (𝑎 = 𝑑 → (𝑍 ∖ {𝑎}) = (𝑍 ∖ {𝑑}))
64 id 22 . . . . 5 (𝑎 = 𝑑𝑎 = 𝑑)
65 eqidd 2734 . . . . 5 (𝑎 = 𝑑𝐵 = 𝐵)
66 eqidd 2734 . . . . 5 (𝑎 = 𝑑𝑐 = 𝑐)
6764, 65, 66s3eqd 14815 . . . 4 (𝑎 = 𝑑 → ⟨“𝑎𝐵𝑐”⟩ = ⟨“𝑑𝐵𝑐”⟩)
6867sneqd 4641 . . 3 (𝑎 = 𝑑 → {⟨“𝑎𝐵𝑐”⟩} = {⟨“𝑑𝐵𝑐”⟩})
6963, 68disjiunb 5138 . 2 (Disj 𝑎𝑌 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ↔ ∀𝑎𝑌𝑑𝑌 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩} ∩ 𝑐 ∈ (𝑍 ∖ {𝑑}){⟨“𝑑𝐵𝑐”⟩}) = ∅))
7061, 69sylibr 233 1 (𝐵𝑋Disj 𝑎𝑌 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  cdif 3946  cin 3948  c0 4323  {csn 4629   ciun 4998  Disj wdisj 5114  cfv 6544  0cc0 11110  1c1 11111  2c2 12267  3c3 12268  chash 14290  Word cword 14464  ⟨“cs3 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521  df-s1 14546  df-s2 14799  df-s3 14800
This theorem is referenced by:  fusgreghash2wspv  29588
  Copyright terms: Public domain W3C validator