MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjiund Structured version   Visualization version   GIF version

Theorem disjiund 5137
Description: Conditions for a collection of index unions of sets 𝐴(𝑎, 𝑏) for 𝑎𝑉 and 𝑏𝑊 to be disjoint. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
disjiund.1 (𝑎 = 𝑐𝐴 = 𝐶)
disjiund.2 (𝑏 = 𝑑𝐶 = 𝐷)
disjiund.3 (𝑎 = 𝑐𝑊 = 𝑋)
disjiund.4 ((𝜑𝑥𝐴𝑥𝐷) → 𝑎 = 𝑐)
Assertion
Ref Expression
disjiund (𝜑Disj 𝑎𝑉 𝑏𝑊 𝐴)
Distinct variable groups:   𝐴,𝑐,𝑑,𝑥   𝐶,𝑎,𝑑,𝑥   𝐷,𝑏   𝑉,𝑎,𝑐   𝑊,𝑏,𝑐,𝑑,𝑥   𝑋,𝑎,𝑏,𝑑,𝑥   𝜑,𝑎,𝑏,𝑐,𝑑,𝑥
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐶(𝑏,𝑐)   𝐷(𝑥,𝑎,𝑐,𝑑)   𝑉(𝑥,𝑏,𝑑)   𝑊(𝑎)   𝑋(𝑐)

Proof of Theorem disjiund
StepHypRef Expression
1 eliun 5000 . . . . . . . . 9 (𝑥 𝑏𝑊 𝐴 ↔ ∃𝑏𝑊 𝑥𝐴)
2 eliun 5000 . . . . . . . . . . . 12 (𝑥 𝑏𝑋 𝐶 ↔ ∃𝑏𝑋 𝑥𝐶)
3 disjiund.2 . . . . . . . . . . . . . . 15 (𝑏 = 𝑑𝐶 = 𝐷)
43eleq2d 2817 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑥𝐶𝑥𝐷))
54cbvrexvw 3233 . . . . . . . . . . . . 13 (∃𝑏𝑋 𝑥𝐶 ↔ ∃𝑑𝑋 𝑥𝐷)
6 disjiund.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑥𝐷) → 𝑎 = 𝑐)
763exp 1117 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐴 → (𝑥𝐷𝑎 = 𝑐)))
87rexlimdvw 3158 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑏𝑊 𝑥𝐴 → (𝑥𝐷𝑎 = 𝑐)))
98imp 405 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∃𝑏𝑊 𝑥𝐴) → (𝑥𝐷𝑎 = 𝑐))
109rexlimdvw 3158 . . . . . . . . . . . . 13 ((𝜑 ∧ ∃𝑏𝑊 𝑥𝐴) → (∃𝑑𝑋 𝑥𝐷𝑎 = 𝑐))
115, 10biimtrid 241 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑏𝑊 𝑥𝐴) → (∃𝑏𝑋 𝑥𝐶𝑎 = 𝑐))
122, 11biimtrid 241 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑏𝑊 𝑥𝐴) → (𝑥 𝑏𝑋 𝐶𝑎 = 𝑐))
1312con3d 152 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑏𝑊 𝑥𝐴) → (¬ 𝑎 = 𝑐 → ¬ 𝑥 𝑏𝑋 𝐶))
1413impancom 450 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑎 = 𝑐) → (∃𝑏𝑊 𝑥𝐴 → ¬ 𝑥 𝑏𝑋 𝐶))
151, 14biimtrid 241 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑎 = 𝑐) → (𝑥 𝑏𝑊 𝐴 → ¬ 𝑥 𝑏𝑋 𝐶))
1615ralrimiv 3143 . . . . . . 7 ((𝜑 ∧ ¬ 𝑎 = 𝑐) → ∀𝑥 𝑏𝑊 𝐴 ¬ 𝑥 𝑏𝑋 𝐶)
17 disj 4446 . . . . . . 7 (( 𝑏𝑊 𝐴 𝑏𝑋 𝐶) = ∅ ↔ ∀𝑥 𝑏𝑊 𝐴 ¬ 𝑥 𝑏𝑋 𝐶)
1816, 17sylibr 233 . . . . . 6 ((𝜑 ∧ ¬ 𝑎 = 𝑐) → ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶) = ∅)
1918ex 411 . . . . 5 (𝜑 → (¬ 𝑎 = 𝑐 → ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶) = ∅))
2019orrd 859 . . . 4 (𝜑 → (𝑎 = 𝑐 ∨ ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶) = ∅))
2120a1d 25 . . 3 (𝜑 → ((𝑎𝑉𝑐𝑉) → (𝑎 = 𝑐 ∨ ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶) = ∅)))
2221ralrimivv 3196 . 2 (𝜑 → ∀𝑎𝑉𝑐𝑉 (𝑎 = 𝑐 ∨ ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶) = ∅))
23 disjiund.3 . . 3 (𝑎 = 𝑐𝑊 = 𝑋)
24 disjiund.1 . . 3 (𝑎 = 𝑐𝐴 = 𝐶)
2523, 24disjiunb 5136 . 2 (Disj 𝑎𝑉 𝑏𝑊 𝐴 ↔ ∀𝑎𝑉𝑐𝑉 (𝑎 = 𝑐 ∨ ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶) = ∅))
2622, 25sylibr 233 1 (𝜑Disj 𝑎𝑉 𝑏𝑊 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 843  w3a 1085   = wceq 1539  wcel 2104  wral 3059  wrex 3068  cin 3946  c0 4321   ciun 4996  Disj wdisj 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-mo 2532  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rmo 3374  df-v 3474  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4322  df-iun 4998  df-disj 5113
This theorem is referenced by:  2wspiundisj  29484
  Copyright terms: Public domain W3C validator