Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjresdif Structured version   Visualization version   GIF version

Theorem disjresdif 37096
Description: The difference between restrictions to disjoint is the first restriction. (Contributed by Peter Mazsa, 24-Jul-2024.)
Assertion
Ref Expression
disjresdif ((𝐴𝐵) = ∅ → ((𝑅𝐴) ∖ (𝑅𝐵)) = (𝑅𝐴))

Proof of Theorem disjresdif
StepHypRef Expression
1 disjresdisj 37095 . 2 ((𝐴𝐵) = ∅ → ((𝑅𝐴) ∩ (𝑅𝐵)) = ∅)
2 disjdif2 4478 . 2 (((𝑅𝐴) ∩ (𝑅𝐵)) = ∅ → ((𝑅𝐴) ∖ (𝑅𝐵)) = (𝑅𝐴))
31, 2syl 17 1 ((𝐴𝐵) = ∅ → ((𝑅𝐴) ∖ (𝑅𝐵)) = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cdif 3944  cin 3946  c0 4321  cres 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-opab 5210  df-xp 5681  df-rel 5682  df-res 5687
This theorem is referenced by:  disjresundif  37097
  Copyright terms: Public domain W3C validator