![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjresundif | Structured version Visualization version GIF version |
Description: Lemma for ressucdifsn2 37636. (Contributed by Peter Mazsa, 24-Jul-2024.) |
Ref | Expression |
---|---|
disjresundif | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundi 5993 | . . . 4 ⊢ (𝑅 ↾ (𝐴 ∪ 𝐵)) = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) | |
2 | 1 | difeq1i 4114 | . . 3 ⊢ ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) ∖ (𝑅 ↾ 𝐵)) |
3 | difun2 4476 | . . 3 ⊢ (((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) | |
4 | 2, 3 | eqtri 2755 | . 2 ⊢ ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) |
5 | disjresdif 37634 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) | |
6 | 4, 5 | eqtrid 2779 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∖ cdif 3941 ∪ cun 3942 ∩ cin 3943 ∅c0 4318 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5205 df-xp 5678 df-rel 5679 df-res 5684 |
This theorem is referenced by: ressucdifsn2 37636 |
Copyright terms: Public domain | W3C validator |