| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjresundif | Structured version Visualization version GIF version | ||
| Description: Lemma for ressucdifsn2 38267. (Contributed by Peter Mazsa, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| disjresundif | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5985 | . . . 4 ⊢ (𝑅 ↾ (𝐴 ∪ 𝐵)) = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) | |
| 2 | 1 | difeq1i 4102 | . . 3 ⊢ ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) ∖ (𝑅 ↾ 𝐵)) |
| 3 | difun2 4461 | . . 3 ⊢ (((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) | |
| 4 | 2, 3 | eqtri 2759 | . 2 ⊢ ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) |
| 5 | disjresdif 38265 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) | |
| 6 | 4, 5 | eqtrid 2783 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-xp 5665 df-rel 5666 df-res 5671 |
| This theorem is referenced by: ressucdifsn2 38267 |
| Copyright terms: Public domain | W3C validator |