Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjresundif Structured version   Visualization version   GIF version

Theorem disjresundif 37109
Description: Lemma for ressucdifsn2 37110. (Contributed by Peter Mazsa, 24-Jul-2024.)
Assertion
Ref Expression
disjresundif ((𝐴𝐵) = ∅ → ((𝑅 ↾ (𝐴𝐵)) ∖ (𝑅𝐵)) = (𝑅𝐴))

Proof of Theorem disjresundif
StepHypRef Expression
1 resundi 5996 . . . 4 (𝑅 ↾ (𝐴𝐵)) = ((𝑅𝐴) ∪ (𝑅𝐵))
21difeq1i 4119 . . 3 ((𝑅 ↾ (𝐴𝐵)) ∖ (𝑅𝐵)) = (((𝑅𝐴) ∪ (𝑅𝐵)) ∖ (𝑅𝐵))
3 difun2 4481 . . 3 (((𝑅𝐴) ∪ (𝑅𝐵)) ∖ (𝑅𝐵)) = ((𝑅𝐴) ∖ (𝑅𝐵))
42, 3eqtri 2761 . 2 ((𝑅 ↾ (𝐴𝐵)) ∖ (𝑅𝐵)) = ((𝑅𝐴) ∖ (𝑅𝐵))
5 disjresdif 37108 . 2 ((𝐴𝐵) = ∅ → ((𝑅𝐴) ∖ (𝑅𝐵)) = (𝑅𝐴))
64, 5eqtrid 2785 1 ((𝐴𝐵) = ∅ → ((𝑅 ↾ (𝐴𝐵)) ∖ (𝑅𝐵)) = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  cdif 3946  cun 3947  cin 3948  c0 4323  cres 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-opab 5212  df-xp 5683  df-rel 5684  df-res 5689
This theorem is referenced by:  ressucdifsn2  37110
  Copyright terms: Public domain W3C validator