Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjresundif | Structured version Visualization version GIF version |
Description: Lemma for ressucdifsn2 36457. (Contributed by Peter Mazsa, 24-Jul-2024.) |
Ref | Expression |
---|---|
disjresundif | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundi 5917 | . . . 4 ⊢ (𝑅 ↾ (𝐴 ∪ 𝐵)) = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) | |
2 | 1 | difeq1i 4059 | . . 3 ⊢ ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) ∖ (𝑅 ↾ 𝐵)) |
3 | difun2 4420 | . . 3 ⊢ (((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) | |
4 | 2, 3 | eqtri 2764 | . 2 ⊢ ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) |
5 | disjresdif 36455 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) | |
6 | 4, 5 | eqtrid 2788 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∖ cdif 3889 ∪ cun 3890 ∩ cin 3891 ∅c0 4262 ↾ cres 5602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3341 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-opab 5144 df-xp 5606 df-rel 5607 df-res 5612 |
This theorem is referenced by: ressucdifsn2 36457 |
Copyright terms: Public domain | W3C validator |