![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjresundif | Structured version Visualization version GIF version |
Description: Lemma for ressucdifsn2 37770. (Contributed by Peter Mazsa, 24-Jul-2024.) |
Ref | Expression |
---|---|
disjresundif | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundi 5993 | . . . 4 ⊢ (𝑅 ↾ (𝐴 ∪ 𝐵)) = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) | |
2 | 1 | difeq1i 4110 | . . 3 ⊢ ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) ∖ (𝑅 ↾ 𝐵)) |
3 | difun2 4476 | . . 3 ⊢ (((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) | |
4 | 2, 3 | eqtri 2753 | . 2 ⊢ ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) |
5 | disjresdif 37768 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ 𝐴) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) | |
6 | 4, 5 | eqtrid 2777 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑅 ↾ (𝐴 ∪ 𝐵)) ∖ (𝑅 ↾ 𝐵)) = (𝑅 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∖ cdif 3937 ∪ cun 3938 ∩ cin 3939 ∅c0 4318 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5206 df-xp 5678 df-rel 5679 df-res 5684 |
This theorem is referenced by: ressucdifsn2 37770 |
Copyright terms: Public domain | W3C validator |