Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjresundif Structured version   Visualization version   GIF version

Theorem disjresundif 37635
Description: Lemma for ressucdifsn2 37636. (Contributed by Peter Mazsa, 24-Jul-2024.)
Assertion
Ref Expression
disjresundif ((𝐴𝐵) = ∅ → ((𝑅 ↾ (𝐴𝐵)) ∖ (𝑅𝐵)) = (𝑅𝐴))

Proof of Theorem disjresundif
StepHypRef Expression
1 resundi 5993 . . . 4 (𝑅 ↾ (𝐴𝐵)) = ((𝑅𝐴) ∪ (𝑅𝐵))
21difeq1i 4114 . . 3 ((𝑅 ↾ (𝐴𝐵)) ∖ (𝑅𝐵)) = (((𝑅𝐴) ∪ (𝑅𝐵)) ∖ (𝑅𝐵))
3 difun2 4476 . . 3 (((𝑅𝐴) ∪ (𝑅𝐵)) ∖ (𝑅𝐵)) = ((𝑅𝐴) ∖ (𝑅𝐵))
42, 3eqtri 2755 . 2 ((𝑅 ↾ (𝐴𝐵)) ∖ (𝑅𝐵)) = ((𝑅𝐴) ∖ (𝑅𝐵))
5 disjresdif 37634 . 2 ((𝐴𝐵) = ∅ → ((𝑅𝐴) ∖ (𝑅𝐵)) = (𝑅𝐴))
64, 5eqtrid 2779 1 ((𝐴𝐵) = ∅ → ((𝑅 ↾ (𝐴𝐵)) ∖ (𝑅𝐵)) = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  cdif 3941  cun 3942  cin 3943  c0 4318  cres 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-opab 5205  df-xp 5678  df-rel 5679  df-res 5684
This theorem is referenced by:  ressucdifsn2  37636
  Copyright terms: Public domain W3C validator