MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubALTlem2 Structured version   Visualization version   GIF version

Theorem alexsubALTlem2 23195
Description: Lemma for alexsubALT 23198. Every subset of a base which has no finite subcover is a subset of a maximal such collection. (Contributed by Jeff Hankins, 27-Jan-2010.)
Hypothesis
Ref Expression
alexsubALT.1 𝑋 = 𝐽
Assertion
Ref Expression
alexsubALTlem2 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) → ∃𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅})∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ¬ 𝑢𝑣)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑢,𝑣,𝑥,𝑧,𝐽   𝑋,𝑎,𝑏,𝑐,𝑑,𝑢,𝑣,𝑥,𝑧

Proof of Theorem alexsubALTlem2
Dummy variables 𝑛 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3919 . . . . . . . . . . . . 13 (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) → (𝑤𝑦𝑤 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅})))
2 elun 4088 . . . . . . . . . . . . . . 15 (𝑤 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ↔ (𝑤 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∨ 𝑤 ∈ {∅}))
3 sseq2 3952 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (𝑎𝑧𝑎𝑤))
4 pweq 4555 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑤 → 𝒫 𝑧 = 𝒫 𝑤)
54ineq1d 4151 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑤 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑤 ∩ Fin))
65raleqdv 3347 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏 ↔ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏))
73, 6anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → ((𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏) ↔ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏)))
87elrab 3626 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ↔ (𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏)))
9 velsn 4583 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {∅} ↔ 𝑤 = ∅)
108, 9orbi12i 912 . . . . . . . . . . . . . . 15 ((𝑤 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∨ 𝑤 ∈ {∅}) ↔ ((𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏)) ∨ 𝑤 = ∅))
112, 10bitri 274 . . . . . . . . . . . . . 14 (𝑤 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ↔ ((𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏)) ∨ 𝑤 = ∅))
12 elpwi 4548 . . . . . . . . . . . . . . . 16 (𝑤 ∈ 𝒫 (fi‘𝑥) → 𝑤 ⊆ (fi‘𝑥))
1312adantr 481 . . . . . . . . . . . . . . 15 ((𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏)) → 𝑤 ⊆ (fi‘𝑥))
14 0ss 4336 . . . . . . . . . . . . . . . 16 ∅ ⊆ (fi‘𝑥)
15 sseq1 3951 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (𝑤 ⊆ (fi‘𝑥) ↔ ∅ ⊆ (fi‘𝑥)))
1614, 15mpbiri 257 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → 𝑤 ⊆ (fi‘𝑥))
1713, 16jaoi 854 . . . . . . . . . . . . . 14 (((𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏)) ∨ 𝑤 = ∅) → 𝑤 ⊆ (fi‘𝑥))
1811, 17sylbi 216 . . . . . . . . . . . . 13 (𝑤 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) → 𝑤 ⊆ (fi‘𝑥))
191, 18syl6 35 . . . . . . . . . . . 12 (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) → (𝑤𝑦𝑤 ⊆ (fi‘𝑥)))
2019ralrimiv 3109 . . . . . . . . . . 11 (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) → ∀𝑤𝑦 𝑤 ⊆ (fi‘𝑥))
21 unissb 4879 . . . . . . . . . . 11 ( 𝑦 ⊆ (fi‘𝑥) ↔ ∀𝑤𝑦 𝑤 ⊆ (fi‘𝑥))
2220, 21sylibr 233 . . . . . . . . . 10 (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) → 𝑦 ⊆ (fi‘𝑥))
2322adantr 481 . . . . . . . . 9 ((𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦) → 𝑦 ⊆ (fi‘𝑥))
2423ad2antlr 724 . . . . . . . 8 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ¬ 𝑦 = ∅) → 𝑦 ⊆ (fi‘𝑥))
25 vuniex 7584 . . . . . . . . 9 𝑦 ∈ V
2625elpw 4543 . . . . . . . 8 ( 𝑦 ∈ 𝒫 (fi‘𝑥) ↔ 𝑦 ⊆ (fi‘𝑥))
2724, 26sylibr 233 . . . . . . 7 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ 𝒫 (fi‘𝑥))
28 uni0b 4873 . . . . . . . . . 10 ( 𝑦 = ∅ ↔ 𝑦 ⊆ {∅})
2928notbii 320 . . . . . . . . 9 𝑦 = ∅ ↔ ¬ 𝑦 ⊆ {∅})
30 disjssun 4407 . . . . . . . . . . . . 13 ((𝑦 ∩ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) = ∅ → (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ↔ 𝑦 ⊆ {∅}))
3130biimpcd 248 . . . . . . . . . . . 12 (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) → ((𝑦 ∩ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) = ∅ → 𝑦 ⊆ {∅}))
3231necon3bd 2959 . . . . . . . . . . 11 (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) → (¬ 𝑦 ⊆ {∅} → (𝑦 ∩ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) ≠ ∅))
33 n0 4286 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑦 ∩ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}))
34 elin 3908 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝑦 ∩ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) ↔ (𝑤𝑦𝑤 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}))
358anbi2i 623 . . . . . . . . . . . . . . 15 ((𝑤𝑦𝑤 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) ↔ (𝑤𝑦 ∧ (𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏))))
3634, 35bitri 274 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑦 ∩ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) ↔ (𝑤𝑦 ∧ (𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏))))
37 simprrl 778 . . . . . . . . . . . . . . 15 ((𝑤𝑦 ∧ (𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏))) → 𝑎𝑤)
38 simpl 483 . . . . . . . . . . . . . . 15 ((𝑤𝑦 ∧ (𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏))) → 𝑤𝑦)
39 ssuni 4872 . . . . . . . . . . . . . . 15 ((𝑎𝑤𝑤𝑦) → 𝑎 𝑦)
4037, 38, 39syl2anc 584 . . . . . . . . . . . . . 14 ((𝑤𝑦 ∧ (𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏))) → 𝑎 𝑦)
4136, 40sylbi 216 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑦 ∩ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) → 𝑎 𝑦)
4241exlimiv 1937 . . . . . . . . . . . 12 (∃𝑤 𝑤 ∈ (𝑦 ∩ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) → 𝑎 𝑦)
4333, 42sylbi 216 . . . . . . . . . . 11 ((𝑦 ∩ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) ≠ ∅ → 𝑎 𝑦)
4432, 43syl6 35 . . . . . . . . . 10 (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) → (¬ 𝑦 ⊆ {∅} → 𝑎 𝑦))
4544ad2antrl 725 . . . . . . . . 9 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) → (¬ 𝑦 ⊆ {∅} → 𝑎 𝑦))
4629, 45syl5bi 241 . . . . . . . 8 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) → (¬ 𝑦 = ∅ → 𝑎 𝑦))
4746imp 407 . . . . . . 7 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ¬ 𝑦 = ∅) → 𝑎 𝑦)
48 elfpw 9097 . . . . . . . . . 10 (𝑛 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑛 𝑦𝑛 ∈ Fin))
49 unieq 4856 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → 𝑦 = ∅)
50 uni0 4875 . . . . . . . . . . . . . . . . . . 19 ∅ = ∅
5149, 50eqtrdi 2796 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → 𝑦 = ∅)
5251necon3bi 2972 . . . . . . . . . . . . . . . . 17 𝑦 = ∅ → 𝑦 ≠ ∅)
5352adantr 481 . . . . . . . . . . . . . . . 16 ((¬ 𝑦 = ∅ ∧ 𝑛 ∈ Fin) → 𝑦 ≠ ∅)
5453ad2antrl 725 . . . . . . . . . . . . . . 15 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ((¬ 𝑦 = ∅ ∧ 𝑛 ∈ Fin) ∧ 𝑛 𝑦)) → 𝑦 ≠ ∅)
55 simplrr 775 . . . . . . . . . . . . . . 15 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ((¬ 𝑦 = ∅ ∧ 𝑛 ∈ Fin) ∧ 𝑛 𝑦)) → [] Or 𝑦)
56 simprlr 777 . . . . . . . . . . . . . . 15 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ((¬ 𝑦 = ∅ ∧ 𝑛 ∈ Fin) ∧ 𝑛 𝑦)) → 𝑛 ∈ Fin)
57 simprr 770 . . . . . . . . . . . . . . 15 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ((¬ 𝑦 = ∅ ∧ 𝑛 ∈ Fin) ∧ 𝑛 𝑦)) → 𝑛 𝑦)
58 finsschain 9102 . . . . . . . . . . . . . . 15 (((𝑦 ≠ ∅ ∧ [] Or 𝑦) ∧ (𝑛 ∈ Fin ∧ 𝑛 𝑦)) → ∃𝑤𝑦 𝑛𝑤)
5954, 55, 56, 57, 58syl22anc 836 . . . . . . . . . . . . . 14 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ((¬ 𝑦 = ∅ ∧ 𝑛 ∈ Fin) ∧ 𝑛 𝑦)) → ∃𝑤𝑦 𝑛𝑤)
6059expr 457 . . . . . . . . . . . . 13 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ (¬ 𝑦 = ∅ ∧ 𝑛 ∈ Fin)) → (𝑛 𝑦 → ∃𝑤𝑦 𝑛𝑤))
61 0elpw 5282 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ 𝒫 𝑎
62 0fin 8934 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ Fin
6361, 62elini 4132 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ (𝒫 𝑎 ∩ Fin)
64 unieq 4856 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ∅ → 𝑏 = ∅)
6564eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ∅ → (𝑋 = 𝑏𝑋 = ∅))
6665notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ∅ → (¬ 𝑋 = 𝑏 ↔ ¬ 𝑋 = ∅))
6766rspccv 3558 . . . . . . . . . . . . . . . . . . 19 (∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏 → (∅ ∈ (𝒫 𝑎 ∩ Fin) → ¬ 𝑋 = ∅))
6863, 67mpi 20 . . . . . . . . . . . . . . . . . 18 (∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏 → ¬ 𝑋 = ∅)
69 velpw 4544 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ 𝒫 𝑤𝑛𝑤)
70 elin 3908 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ (𝒫 𝑤 ∩ Fin) ↔ (𝑛 ∈ 𝒫 𝑤𝑛 ∈ Fin))
71 unieq 4856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑏 = 𝑛 𝑏 = 𝑛)
7271eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑛 → (𝑋 = 𝑏𝑋 = 𝑛))
7372notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 = 𝑛 → (¬ 𝑋 = 𝑏 ↔ ¬ 𝑋 = 𝑛))
7473rspccv 3558 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏 → (𝑛 ∈ (𝒫 𝑤 ∩ Fin) → ¬ 𝑋 = 𝑛))
7570, 74syl5bir 242 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏 → ((𝑛 ∈ 𝒫 𝑤𝑛 ∈ Fin) → ¬ 𝑋 = 𝑛))
7675expd 416 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏 → (𝑛 ∈ 𝒫 𝑤 → (𝑛 ∈ Fin → ¬ 𝑋 = 𝑛)))
7769, 76syl5bir 242 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏 → (𝑛𝑤 → (𝑛 ∈ Fin → ¬ 𝑋 = 𝑛)))
7877com23 86 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏 → (𝑛 ∈ Fin → (𝑛𝑤 → ¬ 𝑋 = 𝑛)))
7978ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏)) → (𝑛 ∈ Fin → (𝑛𝑤 → ¬ 𝑋 = 𝑛)))
8079a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 𝑋 = ∅ → ((𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏)) → (𝑛 ∈ Fin → (𝑛𝑤 → ¬ 𝑋 = 𝑛))))
81 sseq2 3952 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = ∅ → (𝑛𝑤𝑛 ⊆ ∅))
82 ss0 4338 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ⊆ ∅ → 𝑛 = ∅)
8381, 82syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ∅ → (𝑛𝑤𝑛 = ∅))
84 unieq 4856 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = ∅ → 𝑛 = ∅)
8584eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = ∅ → (𝑋 = 𝑛𝑋 = ∅))
8685notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = ∅ → (¬ 𝑋 = 𝑛 ↔ ¬ 𝑋 = ∅))
8786biimprcd 249 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑋 = ∅ → (𝑛 = ∅ → ¬ 𝑋 = 𝑛))
8887a1dd 50 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑋 = ∅ → (𝑛 = ∅ → (𝑛 ∈ Fin → ¬ 𝑋 = 𝑛)))
8983, 88syl9r 78 . . . . . . . . . . . . . . . . . . . . . . 23 𝑋 = ∅ → (𝑤 = ∅ → (𝑛𝑤 → (𝑛 ∈ Fin → ¬ 𝑋 = 𝑛))))
9089com34 91 . . . . . . . . . . . . . . . . . . . . . 22 𝑋 = ∅ → (𝑤 = ∅ → (𝑛 ∈ Fin → (𝑛𝑤 → ¬ 𝑋 = 𝑛))))
9180, 90jaod 856 . . . . . . . . . . . . . . . . . . . . 21 𝑋 = ∅ → (((𝑤 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎𝑤 ∧ ∀𝑏 ∈ (𝒫 𝑤 ∩ Fin) ¬ 𝑋 = 𝑏)) ∨ 𝑤 = ∅) → (𝑛 ∈ Fin → (𝑛𝑤 → ¬ 𝑋 = 𝑛))))
9211, 91syl5bi 241 . . . . . . . . . . . . . . . . . . . 20 𝑋 = ∅ → (𝑤 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) → (𝑛 ∈ Fin → (𝑛𝑤 → ¬ 𝑋 = 𝑛))))
931, 92sylan9r 509 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑋 = ∅ ∧ 𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅})) → (𝑤𝑦 → (𝑛 ∈ Fin → (𝑛𝑤 → ¬ 𝑋 = 𝑛))))
9493com23 86 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑋 = ∅ ∧ 𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅})) → (𝑛 ∈ Fin → (𝑤𝑦 → (𝑛𝑤 → ¬ 𝑋 = 𝑛))))
9568, 94sylan 580 . . . . . . . . . . . . . . . . 17 ((∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅})) → (𝑛 ∈ Fin → (𝑤𝑦 → (𝑛𝑤 → ¬ 𝑋 = 𝑛))))
9695ad2ant2lr 745 . . . . . . . . . . . . . . . 16 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) → (𝑛 ∈ Fin → (𝑤𝑦 → (𝑛𝑤 → ¬ 𝑋 = 𝑛))))
9796imp 407 . . . . . . . . . . . . . . 15 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ 𝑛 ∈ Fin) → (𝑤𝑦 → (𝑛𝑤 → ¬ 𝑋 = 𝑛)))
9897adantrl 713 . . . . . . . . . . . . . 14 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ (¬ 𝑦 = ∅ ∧ 𝑛 ∈ Fin)) → (𝑤𝑦 → (𝑛𝑤 → ¬ 𝑋 = 𝑛)))
9998rexlimdv 3214 . . . . . . . . . . . . 13 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ (¬ 𝑦 = ∅ ∧ 𝑛 ∈ Fin)) → (∃𝑤𝑦 𝑛𝑤 → ¬ 𝑋 = 𝑛))
10060, 99syld 47 . . . . . . . . . . . 12 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ (¬ 𝑦 = ∅ ∧ 𝑛 ∈ Fin)) → (𝑛 𝑦 → ¬ 𝑋 = 𝑛))
101100expr 457 . . . . . . . . . . 11 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ¬ 𝑦 = ∅) → (𝑛 ∈ Fin → (𝑛 𝑦 → ¬ 𝑋 = 𝑛)))
102101impcomd 412 . . . . . . . . . 10 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ¬ 𝑦 = ∅) → ((𝑛 𝑦𝑛 ∈ Fin) → ¬ 𝑋 = 𝑛))
10348, 102syl5bi 241 . . . . . . . . 9 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ¬ 𝑦 = ∅) → (𝑛 ∈ (𝒫 𝑦 ∩ Fin) → ¬ 𝑋 = 𝑛))
104103ralrimiv 3109 . . . . . . . 8 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ¬ 𝑦 = ∅) → ∀𝑛 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑛)
105 unieq 4856 . . . . . . . . . . 11 (𝑛 = 𝑏 𝑛 = 𝑏)
106105eqeq2d 2751 . . . . . . . . . 10 (𝑛 = 𝑏 → (𝑋 = 𝑛𝑋 = 𝑏))
107106notbid 318 . . . . . . . . 9 (𝑛 = 𝑏 → (¬ 𝑋 = 𝑛 ↔ ¬ 𝑋 = 𝑏))
108107cbvralvw 3381 . . . . . . . 8 (∀𝑛 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑛 ↔ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏)
109104, 108sylib 217 . . . . . . 7 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ¬ 𝑦 = ∅) → ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏)
11027, 47, 109jca32 516 . . . . . 6 (((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) ∧ ¬ 𝑦 = ∅) → ( 𝑦 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 𝑦 ∧ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏)))
111110ex 413 . . . . 5 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) → (¬ 𝑦 = ∅ → ( 𝑦 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 𝑦 ∧ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏))))
112 orcom 867 . . . . . 6 (( 𝑦 ∈ {∅} ∨ 𝑦 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) ↔ ( 𝑦 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∨ 𝑦 ∈ {∅}))
11325elsn 4582 . . . . . . . 8 ( 𝑦 ∈ {∅} ↔ 𝑦 = ∅)
114 sseq2 3952 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑎𝑧𝑎 𝑦))
115 pweq 4555 . . . . . . . . . . . 12 (𝑧 = 𝑦 → 𝒫 𝑧 = 𝒫 𝑦)
116115ineq1d 4151 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑦 ∩ Fin))
117116raleqdv 3347 . . . . . . . . . 10 (𝑧 = 𝑦 → (∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏 ↔ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏))
118114, 117anbi12d 631 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏) ↔ (𝑎 𝑦 ∧ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏)))
119118elrab 3626 . . . . . . . 8 ( 𝑦 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ↔ ( 𝑦 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 𝑦 ∧ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏)))
120113, 119orbi12i 912 . . . . . . 7 (( 𝑦 ∈ {∅} ∨ 𝑦 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}) ↔ ( 𝑦 = ∅ ∨ ( 𝑦 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 𝑦 ∧ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏))))
121 df-or 845 . . . . . . 7 (( 𝑦 = ∅ ∨ ( 𝑦 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 𝑦 ∧ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏))) ↔ (¬ 𝑦 = ∅ → ( 𝑦 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 𝑦 ∧ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏))))
122120, 121bitr2i 275 . . . . . 6 ((¬ 𝑦 = ∅ → ( 𝑦 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 𝑦 ∧ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏))) ↔ ( 𝑦 ∈ {∅} ∨ 𝑦 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)}))
123 elun 4088 . . . . . 6 ( 𝑦 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ↔ ( 𝑦 ∈ {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∨ 𝑦 ∈ {∅}))
124112, 122, 1233bitr4i 303 . . . . 5 ((¬ 𝑦 = ∅ → ( 𝑦 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 𝑦 ∧ ∀𝑏 ∈ (𝒫 𝑦 ∩ Fin) ¬ 𝑋 = 𝑏))) ↔ 𝑦 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}))
125111, 124sylib 217 . . . 4 ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) ∧ (𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦)) → 𝑦 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}))
126125ex 413 . . 3 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) → ((𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦) → 𝑦 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅})))
127126alrimiv 1934 . 2 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) → ∀𝑦((𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦) → 𝑦 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅})))
128 fvex 6782 . . . . . 6 (fi‘𝑥) ∈ V
129128pwex 5307 . . . . 5 𝒫 (fi‘𝑥) ∈ V
130129rabex 5260 . . . 4 {𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∈ V
131 p0ex 5311 . . . 4 {∅} ∈ V
132130, 131unex 7588 . . 3 ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∈ V
133132zorn 10262 . 2 (∀𝑦((𝑦 ⊆ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ∧ [] Or 𝑦) → 𝑦 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅})) → ∃𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅})∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ¬ 𝑢𝑣)
134127, 133syl 17 1 (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ ∀𝑏 ∈ (𝒫 𝑎 ∩ Fin) ¬ 𝑋 = 𝑏) → ∃𝑢 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅})∀𝑣 ∈ ({𝑧 ∈ 𝒫 (fi‘𝑥) ∣ (𝑎𝑧 ∧ ∀𝑏 ∈ (𝒫 𝑧 ∩ Fin) ¬ 𝑋 = 𝑏)} ∪ {∅}) ¬ 𝑢𝑣)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086  wal 1540   = wceq 1542  wex 1786  wcel 2110  wne 2945  wral 3066  wrex 3067  {crab 3070  cun 3890  cin 3891  wss 3892  wpss 3893  c0 4262  𝒫 cpw 4539  {csn 4567   cuni 4845   Or wor 5502  cfv 6431   [] crpss 7567  Fincfn 8714  ficfi 9145  topGenctg 17144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-ac2 10218
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-rpss 7568  df-om 7705  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-en 8715  df-fin 8718  df-card 9696  df-ac 9871
This theorem is referenced by:  alexsubALTlem4  23197
  Copyright terms: Public domain W3C validator