MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvne0 Structured version   Visualization version   GIF version

Theorem dvne0 25080
Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvne0.a (𝜑𝐴 ∈ ℝ)
dvne0.b (𝜑𝐵 ∈ ℝ)
dvne0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvne0.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvne0.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
Assertion
Ref Expression
dvne0 (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))

Proof of Theorem dvne0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvne0.z . . . . . . . . . . . 12 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
2 eleq1 2826 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ 0 ∈ ran (ℝ D 𝐹)))
32notbid 317 . . . . . . . . . . . 12 (𝑥 = 0 → (¬ 𝑥 ∈ ran (ℝ D 𝐹) ↔ ¬ 0 ∈ ran (ℝ D 𝐹)))
41, 3syl5ibrcom 246 . . . . . . . . . . 11 (𝜑 → (𝑥 = 0 → ¬ 𝑥 ∈ ran (ℝ D 𝐹)))
54necon2ad 2957 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ≠ 0))
65imp 406 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ≠ 0)
7 dvne0.f . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
8 cncff 23962 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
97, 8syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
10 dvne0.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
11 dvne0.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
12 iccssre 13090 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1310, 11, 12syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
14 dvfre 25020 . . . . . . . . . . . . . 14 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
159, 13, 14syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1615frnd 6592 . . . . . . . . . . . 12 (𝜑 → ran (ℝ D 𝐹) ⊆ ℝ)
1716sselda 3917 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ℝ)
18 0re 10908 . . . . . . . . . . 11 0 ∈ ℝ
19 lttri2 10988 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2017, 18, 19sylancl 585 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
21 0xr 10953 . . . . . . . . . . . . . 14 0 ∈ ℝ*
22 elioomnf 13105 . . . . . . . . . . . . . 14 (0 ∈ ℝ* → (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0)))
2321, 22ax-mp 5 . . . . . . . . . . . . 13 (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
2423baib 535 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ (-∞(,)0) ↔ 𝑥 < 0))
25 elrp 12661 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
2625baib 535 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ+ ↔ 0 < 𝑥))
2724, 26orbi12d 915 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2817, 27syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2920, 28bitr4d 281 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+)))
306, 29mpbid 231 . . . . . . . 8 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+))
31 elun 4079 . . . . . . . 8 (𝑥 ∈ ((-∞(,)0) ∪ ℝ+) ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+))
3230, 31sylibr 233 . . . . . . 7 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ((-∞(,)0) ∪ ℝ+))
3332ex 412 . . . . . 6 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ∈ ((-∞(,)0) ∪ ℝ+)))
3433ssrdv 3923 . . . . 5 (𝜑 → ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪ ℝ+))
35 disjssun 4398 . . . . 5 ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅ → (ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪ ℝ+) ↔ ran (ℝ D 𝐹) ⊆ ℝ+))
3634, 35syl5ibcom 244 . . . 4 (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅ → ran (ℝ D 𝐹) ⊆ ℝ+))
3736imp 406 . . 3 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅) → ran (ℝ D 𝐹) ⊆ ℝ+)
3810adantr 480 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐴 ∈ ℝ)
3911adantr 480 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐵 ∈ ℝ)
407adantr 480 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
41 dvne0.d . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
4241feq2d 6570 . . . . . . . . 9 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
4315, 42mpbid 231 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
4443ffnd 6585 . . . . . . 7 (𝜑 → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
4544anim1i 614 . . . . . 6 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆ ℝ+))
46 df-f 6422 . . . . . 6 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+ ↔ ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆ ℝ+))
4745, 46sylibr 233 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+)
4838, 39, 40, 47dvgt0 25073 . . . 4 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))
4948orcd 869 . . 3 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
5037, 49syldan 590 . 2 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
51 n0 4277 . . . 4 ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)))
52 elin 3899 . . . . . 6 (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ↔ (𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)))
53 fvelrnb 6812 . . . . . . . . 9 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥))
5444, 53syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥))
5510adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐴 ∈ ℝ)
5611adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐵 ∈ ℝ)
577adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
5844adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
5943adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
6059ffvelrnda 6943 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ)
611ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐹))
62 simplrl 773 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑦 ∈ (𝐴(,)𝐵))
63 simprl 767 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑧 ∈ (𝐴(,)𝐵))
64 ioossicc 13094 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
65 rescncf 23966 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ)))
6664, 7, 65mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
6766ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
68 ax-resscn 10859 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℝ ⊆ ℂ
6968a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ℝ ⊆ ℂ)
70 fss 6601 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
719, 68, 70sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
7264, 13sstrid 3928 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
73 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7473tgioo2 23872 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
7573, 74dvres 24980 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
7669, 71, 13, 72, 75syl22anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
77 retop 23831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (topGen‘ran (,)) ∈ Top
78 iooretop 23835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
79 isopn3i 22141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
8077, 78, 79mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
8180reseq2i 5877 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))
82 fnresdm 6535 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹))
8344, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹))
8481, 83syl5eq 2791 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = (ℝ D 𝐹))
8576, 84eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹))
8685dmeqd 5803 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = dom (ℝ D 𝐹))
8786, 41eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵))
8887ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵))
8962, 63, 67, 88dvivth 25079 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) ⊆ ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))))
9085ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹))
9190fveq1d 6758 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
9290fveq1d 6758 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
9391, 92oveq12d 7273 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) = (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)))
9490rneqd 5836 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ran (ℝ D 𝐹))
9589, 93, 943sstr3d 3963 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ⊆ ran (ℝ D 𝐹))
9618a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ℝ)
97 simplrr 774 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))
98 elioomnf 13105 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℝ* → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0)))
9921, 98ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))
10097, 99sylib 217 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))
101100simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) < 0)
102100simpld 494 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
103 ltle 10994 . . . . . . . . . . . . . . . . . . . . . . 23 ((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0))
104102, 18, 103sylancl 585 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0))
105101, 104mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ≤ 0)
106 simprr 769 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ≤ ((ℝ D 𝐹)‘𝑧))
10763, 60syldan 590 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ)
108 elicc2 13073 . . . . . . . . . . . . . . . . . . . . . 22 ((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) ∈ ℝ) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))))
109102, 107, 108syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))))
11096, 105, 106, 109mpbir3and 1340 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)))
11195, 110sseldd 3918 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ran (ℝ D 𝐹))
112111expr 456 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (0 ≤ ((ℝ D 𝐹)‘𝑧) → 0 ∈ ran (ℝ D 𝐹)))
11361, 112mtod 197 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧))
114 ltnle 10985 . . . . . . . . . . . . . . . . . 18 ((((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)))
11560, 18, 114sylancl 585 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)))
116113, 115mpbird 256 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) < 0)
117 elioomnf 13105 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0)))
11821, 117ax-mp 5 . . . . . . . . . . . . . . . 16 (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0))
11960, 116, 118sylanbrc 582 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))
120119ralrimiva 3107 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))
121 ffnfv 6974 . . . . . . . . . . . . . 14 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0) ↔ ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0)))
12258, 120, 121sylanbrc 582 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0))
12355, 56, 57, 122dvlt0 25074 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))
124123olcd 870 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
125124expr 456 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
126 eleq1 2826 . . . . . . . . . . 11 (((ℝ D 𝐹)‘𝑦) = 𝑥 → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ 𝑥 ∈ (-∞(,)0)))
127126imbi1d 341 . . . . . . . . . 10 (((ℝ D 𝐹)‘𝑦) = 𝑥 → ((((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))) ↔ (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
128125, 127syl5ibcom 244 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
129128rexlimdva 3212 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
13054, 129sylbid 239 . . . . . . 7 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
131130impd 410 . . . . . 6 (𝜑 → ((𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
13252, 131syl5bi 241 . . . . 5 (𝜑 → (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
133132exlimdv 1937 . . . 4 (𝜑 → (∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
13451, 133syl5bi 241 . . 3 (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅ → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
135134imp 406 . 2 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
13650, 135pm2.61dane 3031 1 (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  cun 3881  cin 3882  wss 3883  c0 4253   class class class wbr 5070  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582   Fn wfn 6413  wf 6414  cfv 6418   Isom wiso 6419  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  +crp 12659  (,)cioo 13008  [,]cicc 13011  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510  Topctop 21950  intcnt 22076  cnccncf 23945   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvne0f1  25081  dvcnvrelem1  25086
  Copyright terms: Public domain W3C validator