MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvne0 Structured version   Visualization version   GIF version

Theorem dvne0 24602
Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvne0.a (𝜑𝐴 ∈ ℝ)
dvne0.b (𝜑𝐵 ∈ ℝ)
dvne0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvne0.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvne0.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
Assertion
Ref Expression
dvne0 (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))

Proof of Theorem dvne0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvne0.z . . . . . . . . . . . 12 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
2 eleq1 2900 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ 0 ∈ ran (ℝ D 𝐹)))
32notbid 320 . . . . . . . . . . . 12 (𝑥 = 0 → (¬ 𝑥 ∈ ran (ℝ D 𝐹) ↔ ¬ 0 ∈ ran (ℝ D 𝐹)))
41, 3syl5ibrcom 249 . . . . . . . . . . 11 (𝜑 → (𝑥 = 0 → ¬ 𝑥 ∈ ran (ℝ D 𝐹)))
54necon2ad 3031 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ≠ 0))
65imp 409 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ≠ 0)
7 dvne0.f . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
8 cncff 23495 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
97, 8syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
10 dvne0.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
11 dvne0.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
12 iccssre 12812 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1310, 11, 12syl2anc 586 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
14 dvfre 24542 . . . . . . . . . . . . . 14 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
159, 13, 14syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1615frnd 6515 . . . . . . . . . . . 12 (𝜑 → ran (ℝ D 𝐹) ⊆ ℝ)
1716sselda 3966 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ℝ)
18 0re 10637 . . . . . . . . . . 11 0 ∈ ℝ
19 lttri2 10717 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2017, 18, 19sylancl 588 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
21 0xr 10682 . . . . . . . . . . . . . 14 0 ∈ ℝ*
22 elioomnf 12826 . . . . . . . . . . . . . 14 (0 ∈ ℝ* → (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0)))
2321, 22ax-mp 5 . . . . . . . . . . . . 13 (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
2423baib 538 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ (-∞(,)0) ↔ 𝑥 < 0))
25 elrp 12385 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
2625baib 538 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ+ ↔ 0 < 𝑥))
2724, 26orbi12d 915 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2817, 27syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2920, 28bitr4d 284 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+)))
306, 29mpbid 234 . . . . . . . 8 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+))
31 elun 4124 . . . . . . . 8 (𝑥 ∈ ((-∞(,)0) ∪ ℝ+) ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+))
3230, 31sylibr 236 . . . . . . 7 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ((-∞(,)0) ∪ ℝ+))
3332ex 415 . . . . . 6 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ∈ ((-∞(,)0) ∪ ℝ+)))
3433ssrdv 3972 . . . . 5 (𝜑 → ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪ ℝ+))
35 disjssun 4416 . . . . 5 ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅ → (ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪ ℝ+) ↔ ran (ℝ D 𝐹) ⊆ ℝ+))
3634, 35syl5ibcom 247 . . . 4 (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅ → ran (ℝ D 𝐹) ⊆ ℝ+))
3736imp 409 . . 3 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅) → ran (ℝ D 𝐹) ⊆ ℝ+)
3810adantr 483 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐴 ∈ ℝ)
3911adantr 483 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐵 ∈ ℝ)
407adantr 483 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
41 dvne0.d . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
4241feq2d 6494 . . . . . . . . 9 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
4315, 42mpbid 234 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
4443ffnd 6509 . . . . . . 7 (𝜑 → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
4544anim1i 616 . . . . . 6 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆ ℝ+))
46 df-f 6353 . . . . . 6 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+ ↔ ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆ ℝ+))
4745, 46sylibr 236 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+)
4838, 39, 40, 47dvgt0 24595 . . . 4 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))
4948orcd 869 . . 3 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
5037, 49syldan 593 . 2 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
51 n0 4309 . . . 4 ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)))
52 elin 4168 . . . . . 6 (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ↔ (𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)))
53 fvelrnb 6720 . . . . . . . . 9 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥))
5444, 53syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥))
5510adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐴 ∈ ℝ)
5611adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐵 ∈ ℝ)
577adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
5844adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
5943adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
6059ffvelrnda 6845 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ)
611ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐹))
62 simplrl 775 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑦 ∈ (𝐴(,)𝐵))
63 simprl 769 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑧 ∈ (𝐴(,)𝐵))
64 ioossicc 12816 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
65 rescncf 23499 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ)))
6664, 7, 65mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
6766ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
68 ax-resscn 10588 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℝ ⊆ ℂ
6968a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ℝ ⊆ ℂ)
70 fss 6521 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
719, 68, 70sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
7264, 13sstrid 3977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
73 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7473tgioo2 23405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
7573, 74dvres 24503 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
7669, 71, 13, 72, 75syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
77 retop 23364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (topGen‘ran (,)) ∈ Top
78 iooretop 23368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
79 isopn3i 21684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
8077, 78, 79mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
8180reseq2i 5844 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))
82 fnresdm 6460 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹))
8344, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹))
8481, 83syl5eq 2868 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = (ℝ D 𝐹))
8576, 84eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹))
8685dmeqd 5768 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = dom (ℝ D 𝐹))
8786, 41eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵))
8887ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵))
8962, 63, 67, 88dvivth 24601 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) ⊆ ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))))
9085ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹))
9190fveq1d 6666 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
9290fveq1d 6666 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
9391, 92oveq12d 7168 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) = (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)))
9490rneqd 5802 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ran (ℝ D 𝐹))
9589, 93, 943sstr3d 4012 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ⊆ ran (ℝ D 𝐹))
9618a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ℝ)
97 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))
98 elioomnf 12826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℝ* → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0)))
9921, 98ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))
10097, 99sylib 220 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))
101100simprd 498 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) < 0)
102100simpld 497 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
103 ltle 10723 . . . . . . . . . . . . . . . . . . . . . . 23 ((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0))
104102, 18, 103sylancl 588 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0))
105101, 104mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ≤ 0)
106 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ≤ ((ℝ D 𝐹)‘𝑧))
10763, 60syldan 593 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ)
108 elicc2 12795 . . . . . . . . . . . . . . . . . . . . . 22 ((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) ∈ ℝ) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))))
109102, 107, 108syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))))
11096, 105, 106, 109mpbir3and 1338 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)))
11195, 110sseldd 3967 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ran (ℝ D 𝐹))
112111expr 459 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (0 ≤ ((ℝ D 𝐹)‘𝑧) → 0 ∈ ran (ℝ D 𝐹)))
11361, 112mtod 200 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧))
114 ltnle 10714 . . . . . . . . . . . . . . . . . 18 ((((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)))
11560, 18, 114sylancl 588 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)))
116113, 115mpbird 259 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) < 0)
117 elioomnf 12826 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0)))
11821, 117ax-mp 5 . . . . . . . . . . . . . . . 16 (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0))
11960, 116, 118sylanbrc 585 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))
120119ralrimiva 3182 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))
121 ffnfv 6876 . . . . . . . . . . . . . 14 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0) ↔ ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0)))
12258, 120, 121sylanbrc 585 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0))
12355, 56, 57, 122dvlt0 24596 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))
124123olcd 870 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
125124expr 459 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
126 eleq1 2900 . . . . . . . . . . 11 (((ℝ D 𝐹)‘𝑦) = 𝑥 → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ 𝑥 ∈ (-∞(,)0)))
127126imbi1d 344 . . . . . . . . . 10 (((ℝ D 𝐹)‘𝑦) = 𝑥 → ((((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))) ↔ (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
128125, 127syl5ibcom 247 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
129128rexlimdva 3284 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
13054, 129sylbid 242 . . . . . . 7 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
131130impd 413 . . . . . 6 (𝜑 → ((𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
13252, 131syl5bi 244 . . . . 5 (𝜑 → (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
133132exlimdv 1930 . . . 4 (𝜑 → (∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
13451, 133syl5bi 244 . . 3 (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅ → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
135134imp 409 . 2 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
13650, 135pm2.61dane 3104 1 (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  cun 3933  cin 3934  wss 3935  c0 4290   class class class wbr 5058  ccnv 5548  dom cdm 5549  ran crn 5550  cres 5551   Fn wfn 6344  wf 6345  cfv 6349   Isom wiso 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  +crp 12383  (,)cioo 12732  [,]cicc 12735  TopOpenctopn 16689  topGenctg 16705  fldccnfld 20539  Topctop 21495  intcnt 21619  cnccncf 23478   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459
This theorem is referenced by:  dvne0f1  24603  dvcnvrelem1  24608
  Copyright terms: Public domain W3C validator