MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvne0 Structured version   Visualization version   GIF version

Theorem dvne0 25914
Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvne0.a (𝜑𝐴 ∈ ℝ)
dvne0.b (𝜑𝐵 ∈ ℝ)
dvne0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvne0.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvne0.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
Assertion
Ref Expression
dvne0 (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))

Proof of Theorem dvne0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvne0.z . . . . . . . . . . . 12 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
2 eleq1 2816 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ 0 ∈ ran (ℝ D 𝐹)))
32notbid 318 . . . . . . . . . . . 12 (𝑥 = 0 → (¬ 𝑥 ∈ ran (ℝ D 𝐹) ↔ ¬ 0 ∈ ran (ℝ D 𝐹)))
41, 3syl5ibrcom 247 . . . . . . . . . . 11 (𝜑 → (𝑥 = 0 → ¬ 𝑥 ∈ ran (ℝ D 𝐹)))
54necon2ad 2940 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ≠ 0))
65imp 406 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ≠ 0)
7 dvne0.f . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
8 cncff 24784 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
97, 8syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
10 dvne0.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
11 dvne0.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
12 iccssre 13332 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1310, 11, 12syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
14 dvfre 25853 . . . . . . . . . . . . . 14 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
159, 13, 14syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1615frnd 6660 . . . . . . . . . . . 12 (𝜑 → ran (ℝ D 𝐹) ⊆ ℝ)
1716sselda 3935 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ℝ)
18 0re 11117 . . . . . . . . . . 11 0 ∈ ℝ
19 lttri2 11198 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2017, 18, 19sylancl 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
21 0xr 11162 . . . . . . . . . . . . . 14 0 ∈ ℝ*
22 elioomnf 13347 . . . . . . . . . . . . . 14 (0 ∈ ℝ* → (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0)))
2321, 22ax-mp 5 . . . . . . . . . . . . 13 (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
2423baib 535 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ (-∞(,)0) ↔ 𝑥 < 0))
25 elrp 12895 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
2625baib 535 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ+ ↔ 0 < 𝑥))
2724, 26orbi12d 918 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2817, 27syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2920, 28bitr4d 282 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+)))
306, 29mpbid 232 . . . . . . . 8 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+))
31 elun 4104 . . . . . . . 8 (𝑥 ∈ ((-∞(,)0) ∪ ℝ+) ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+))
3230, 31sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ((-∞(,)0) ∪ ℝ+))
3332ex 412 . . . . . 6 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ∈ ((-∞(,)0) ∪ ℝ+)))
3433ssrdv 3941 . . . . 5 (𝜑 → ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪ ℝ+))
35 disjssun 4419 . . . . 5 ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅ → (ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪ ℝ+) ↔ ran (ℝ D 𝐹) ⊆ ℝ+))
3634, 35syl5ibcom 245 . . . 4 (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅ → ran (ℝ D 𝐹) ⊆ ℝ+))
3736imp 406 . . 3 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅) → ran (ℝ D 𝐹) ⊆ ℝ+)
3810adantr 480 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐴 ∈ ℝ)
3911adantr 480 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐵 ∈ ℝ)
407adantr 480 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
41 dvne0.d . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
4241feq2d 6636 . . . . . . . . 9 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
4315, 42mpbid 232 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
4443ffnd 6653 . . . . . . 7 (𝜑 → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
4544anim1i 615 . . . . . 6 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆ ℝ+))
46 df-f 6486 . . . . . 6 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+ ↔ ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆ ℝ+))
4745, 46sylibr 234 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+)
4838, 39, 40, 47dvgt0 25907 . . . 4 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))
4948orcd 873 . . 3 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
5037, 49syldan 591 . 2 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
51 n0 4304 . . . 4 ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)))
52 elin 3919 . . . . . 6 (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ↔ (𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)))
53 fvelrnb 6883 . . . . . . . . 9 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥))
5444, 53syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥))
5510adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐴 ∈ ℝ)
5611adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐵 ∈ ℝ)
577adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
5844adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
5943adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
6059ffvelcdmda 7018 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ)
611ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐹))
62 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑦 ∈ (𝐴(,)𝐵))
63 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑧 ∈ (𝐴(,)𝐵))
64 ioossicc 13336 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
65 rescncf 24788 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ)))
6664, 7, 65mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
6766ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
68 ax-resscn 11066 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℝ ⊆ ℂ
6968a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ℝ ⊆ ℂ)
70 fss 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
719, 68, 70sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
7264, 13sstrid 3947 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
73 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
74 tgioo4 24691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
7573, 74dvres 25810 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
7669, 71, 13, 72, 75syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
77 retop 24647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (topGen‘ran (,)) ∈ Top
78 iooretop 24651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
79 isopn3i 22967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
8077, 78, 79mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
8180reseq2i 5927 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))
82 fnresdm 6601 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹))
8344, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹))
8481, 83eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = (ℝ D 𝐹))
8576, 84eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹))
8685dmeqd 5848 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = dom (ℝ D 𝐹))
8786, 41eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵))
8887ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵))
8962, 63, 67, 88dvivth 25913 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) ⊆ ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))))
9085ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹))
9190fveq1d 6824 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
9290fveq1d 6824 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
9391, 92oveq12d 7367 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) = (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)))
9490rneqd 5880 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ran (ℝ D 𝐹))
9589, 93, 943sstr3d 3990 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ⊆ ran (ℝ D 𝐹))
9618a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ℝ)
97 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))
98 elioomnf 13347 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℝ* → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0)))
9921, 98ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))
10097, 99sylib 218 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))
101100simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) < 0)
102100simpld 494 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
103 ltle 11204 . . . . . . . . . . . . . . . . . . . . . . 23 ((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0))
104102, 18, 103sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0))
105101, 104mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ≤ 0)
106 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ≤ ((ℝ D 𝐹)‘𝑧))
10763, 60syldan 591 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ)
108 elicc2 13314 . . . . . . . . . . . . . . . . . . . . . 22 ((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) ∈ ℝ) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))))
109102, 107, 108syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))))
11096, 105, 106, 109mpbir3and 1343 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)))
11195, 110sseldd 3936 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ran (ℝ D 𝐹))
112111expr 456 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (0 ≤ ((ℝ D 𝐹)‘𝑧) → 0 ∈ ran (ℝ D 𝐹)))
11361, 112mtod 198 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧))
114 ltnle 11195 . . . . . . . . . . . . . . . . . 18 ((((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)))
11560, 18, 114sylancl 586 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)))
116113, 115mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) < 0)
117 elioomnf 13347 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0)))
11821, 117ax-mp 5 . . . . . . . . . . . . . . . 16 (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0))
11960, 116, 118sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))
120119ralrimiva 3121 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))
121 ffnfv 7053 . . . . . . . . . . . . . 14 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0) ↔ ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0)))
12258, 120, 121sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0))
12355, 56, 57, 122dvlt0 25908 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))
124123olcd 874 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
125124expr 456 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
126 eleq1 2816 . . . . . . . . . . 11 (((ℝ D 𝐹)‘𝑦) = 𝑥 → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ 𝑥 ∈ (-∞(,)0)))
127126imbi1d 341 . . . . . . . . . 10 (((ℝ D 𝐹)‘𝑦) = 𝑥 → ((((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))) ↔ (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
128125, 127syl5ibcom 245 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
129128rexlimdva 3130 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
13054, 129sylbid 240 . . . . . . 7 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
131130impd 410 . . . . . 6 (𝜑 → ((𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
13252, 131biimtrid 242 . . . . 5 (𝜑 → (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
133132exlimdv 1933 . . . 4 (𝜑 → (∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
13451, 133biimtrid 242 . . 3 (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅ → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
135134imp 406 . 2 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
13650, 135pm2.61dane 3012 1 (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  cun 3901  cin 3902  wss 3903  c0 4284   class class class wbr 5092  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621   Fn wfn 6477  wf 6478  cfv 6482   Isom wiso 6483  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  +crp 12893  (,)cioo 13248  [,]cicc 13251  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261  Topctop 22778  intcnt 22902  cnccncf 24767   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  dvne0f1  25915  dvcnvrelem1  25920
  Copyright terms: Public domain W3C validator