MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvne0 Structured version   Visualization version   GIF version

Theorem dvne0 24065
Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvne0.a (𝜑𝐴 ∈ ℝ)
dvne0.b (𝜑𝐵 ∈ ℝ)
dvne0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvne0.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvne0.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
Assertion
Ref Expression
dvne0 (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))

Proof of Theorem dvne0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvne0.z . . . . . . . . . . . 12 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
2 eleq1 2832 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ 0 ∈ ran (ℝ D 𝐹)))
32notbid 309 . . . . . . . . . . . 12 (𝑥 = 0 → (¬ 𝑥 ∈ ran (ℝ D 𝐹) ↔ ¬ 0 ∈ ran (ℝ D 𝐹)))
41, 3syl5ibrcom 238 . . . . . . . . . . 11 (𝜑 → (𝑥 = 0 → ¬ 𝑥 ∈ ran (ℝ D 𝐹)))
54necon2ad 2952 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ≠ 0))
65imp 395 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ≠ 0)
7 dvne0.f . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
8 cncff 22975 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
97, 8syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
10 dvne0.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
11 dvne0.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
12 iccssre 12457 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1310, 11, 12syl2anc 579 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
14 dvfre 24005 . . . . . . . . . . . . . 14 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
159, 13, 14syl2anc 579 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1615frnd 6230 . . . . . . . . . . . 12 (𝜑 → ran (ℝ D 𝐹) ⊆ ℝ)
1716sselda 3761 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ℝ)
18 0re 10295 . . . . . . . . . . 11 0 ∈ ℝ
19 lttri2 10374 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2017, 18, 19sylancl 580 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
21 0xr 10340 . . . . . . . . . . . . . 14 0 ∈ ℝ*
22 elioomnf 12471 . . . . . . . . . . . . . 14 (0 ∈ ℝ* → (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0)))
2321, 22ax-mp 5 . . . . . . . . . . . . 13 (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
2423baib 531 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ (-∞(,)0) ↔ 𝑥 < 0))
25 elrp 12030 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
2625baib 531 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ+ ↔ 0 < 𝑥))
2724, 26orbi12d 942 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2817, 27syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥)))
2920, 28bitr4d 273 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+)))
306, 29mpbid 223 . . . . . . . 8 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+))
31 elun 3915 . . . . . . . 8 (𝑥 ∈ ((-∞(,)0) ∪ ℝ+) ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+))
3230, 31sylibr 225 . . . . . . 7 ((𝜑𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ((-∞(,)0) ∪ ℝ+))
3332ex 401 . . . . . 6 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ∈ ((-∞(,)0) ∪ ℝ+)))
3433ssrdv 3767 . . . . 5 (𝜑 → ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪ ℝ+))
35 disjssun 4196 . . . . 5 ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅ → (ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪ ℝ+) ↔ ran (ℝ D 𝐹) ⊆ ℝ+))
3634, 35syl5ibcom 236 . . . 4 (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅ → ran (ℝ D 𝐹) ⊆ ℝ+))
3736imp 395 . . 3 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅) → ran (ℝ D 𝐹) ⊆ ℝ+)
3810adantr 472 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐴 ∈ ℝ)
3911adantr 472 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐵 ∈ ℝ)
407adantr 472 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
41 dvne0.d . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
4241feq2d 6209 . . . . . . . . 9 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
4315, 42mpbid 223 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
4443ffnd 6224 . . . . . . 7 (𝜑 → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
4544anim1i 608 . . . . . 6 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆ ℝ+))
46 df-f 6072 . . . . . 6 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+ ↔ ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆ ℝ+))
4745, 46sylibr 225 . . . . 5 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+)
4838, 39, 40, 47dvgt0 24058 . . . 4 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))
4948orcd 899 . . 3 ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
5037, 49syldan 585 . 2 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) = ∅) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
51 n0 4095 . . . 4 ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)))
52 elin 3958 . . . . . 6 (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ↔ (𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)))
53 fvelrnb 6432 . . . . . . . . 9 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥))
5444, 53syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥))
5510adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐴 ∈ ℝ)
5611adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐵 ∈ ℝ)
577adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
5844adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
5943adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
6059ffvelrnda 6549 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ)
611ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐹))
62 simplrl 795 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑦 ∈ (𝐴(,)𝐵))
63 simprl 787 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑧 ∈ (𝐴(,)𝐵))
64 ioossicc 12461 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
65 rescncf 22979 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ)))
6664, 7, 65mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
6766ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
68 ax-resscn 10246 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℝ ⊆ ℂ
6968a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ℝ ⊆ ℂ)
70 fss 6236 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
719, 68, 70sylancl 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
7264, 13syl5ss 3772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
73 eqid 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7473tgioo2 22885 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
7573, 74dvres 23966 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
7669, 71, 13, 72, 75syl22anc 867 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))))
77 retop 22844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (topGen‘ran (,)) ∈ Top
78 iooretop 22848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
79 isopn3i 21166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
8077, 78, 79mp2an 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)
8180reseq2i 5562 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))
82 fnresdm 6178 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹))
8344, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹))
8481, 83syl5eq 2811 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = (ℝ D 𝐹))
8576, 84eqtrd 2799 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹))
8685dmeqd 5494 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = dom (ℝ D 𝐹))
8786, 41eqtrd 2799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵))
8887ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵))
8962, 63, 67, 88dvivth 24064 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) ⊆ ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))))
9085ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹))
9190fveq1d 6377 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
9290fveq1d 6377 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧) = ((ℝ D 𝐹)‘𝑧))
9391, 92oveq12d 6860 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) = (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)))
9490rneqd 5521 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ran (ℝ D 𝐹))
9589, 93, 943sstr3d 3807 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ⊆ ran (ℝ D 𝐹))
9618a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ℝ)
97 simplrr 796 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))
98 elioomnf 12471 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℝ* → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0)))
9921, 98ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))
10097, 99sylib 209 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))
101100simprd 489 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) < 0)
102100simpld 488 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
103 ltle 10380 . . . . . . . . . . . . . . . . . . . . . . 23 ((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0))
104102, 18, 103sylancl 580 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0))
105101, 104mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ≤ 0)
106 simprr 789 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ≤ ((ℝ D 𝐹)‘𝑧))
10763, 60syldan 585 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ)
108 elicc2 12440 . . . . . . . . . . . . . . . . . . . . . 22 ((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) ∈ ℝ) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))))
109102, 107, 108syl2anc 579 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))))
11096, 105, 106, 109mpbir3and 1442 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)))
11195, 110sseldd 3762 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ran (ℝ D 𝐹))
112111expr 448 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (0 ≤ ((ℝ D 𝐹)‘𝑧) → 0 ∈ ran (ℝ D 𝐹)))
11361, 112mtod 189 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧))
114 ltnle 10371 . . . . . . . . . . . . . . . . . 18 ((((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)))
11560, 18, 114sylancl 580 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)))
116113, 115mpbird 248 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) < 0)
117 elioomnf 12471 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0)))
11821, 117ax-mp 5 . . . . . . . . . . . . . . . 16 (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0))
11960, 116, 118sylanbrc 578 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))
120119ralrimiva 3113 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))
121 ffnfv 6578 . . . . . . . . . . . . . 14 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0) ↔ ((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0)))
12258, 120, 121sylanbrc 578 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0))
12355, 56, 57, 122dvlt0 24059 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))
124123olcd 900 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
125124expr 448 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
126 eleq1 2832 . . . . . . . . . . 11 (((ℝ D 𝐹)‘𝑦) = 𝑥 → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ 𝑥 ∈ (-∞(,)0)))
127126imbi1d 332 . . . . . . . . . 10 (((ℝ D 𝐹)‘𝑦) = 𝑥 → ((((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))) ↔ (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
128125, 127syl5ibcom 236 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
129128rexlimdva 3178 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
13054, 129sylbid 231 . . . . . . 7 (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))))
131130impd 398 . . . . . 6 (𝜑 → ((𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
13252, 131syl5bi 233 . . . . 5 (𝜑 → (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
133132exlimdv 2028 . . . 4 (𝜑 → (∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
13451, 133syl5bi 233 . . 3 (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅ → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹))))
135134imp 395 . 2 ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠ ∅) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
13650, 135pm2.61dane 3024 1 (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  cun 3730  cin 3731  wss 3732  c0 4079   class class class wbr 4809  ccnv 5276  dom cdm 5277  ran crn 5278  cres 5279   Fn wfn 6063  wf 6064  cfv 6068   Isom wiso 6069  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  -∞cmnf 10326  *cxr 10327   < clt 10328  cle 10329  +crp 12028  (,)cioo 12377  [,]cicc 12380  TopOpenctopn 16350  topGenctg 16366  fldccnfld 20019  Topctop 20977  intcnt 21101  cnccncf 22958   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922
This theorem is referenced by:  dvne0f1  24066  dvcnvrelem1  24071
  Copyright terms: Public domain W3C validator