Step | Hyp | Ref
| Expression |
1 | | dvne0.z |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 0 ∈ ran
(ℝ D 𝐹)) |
2 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ 0 ∈ ran (ℝ D 𝐹))) |
3 | 2 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (¬ 𝑥 ∈ ran (ℝ D 𝐹) ↔ ¬ 0 ∈ ran
(ℝ D 𝐹))) |
4 | 1, 3 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 = 0 → ¬ 𝑥 ∈ ran (ℝ D 𝐹))) |
5 | 4 | necon2ad 2958 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ≠ 0)) |
6 | 5 | imp 407 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ≠ 0) |
7 | | dvne0.f |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
8 | | cncff 24056 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
9 | 7, 8 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
10 | | dvne0.a |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ ℝ) |
11 | | dvne0.b |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ ℝ) |
12 | | iccssre 13161 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
13 | 10, 11, 12 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
14 | | dvfre 25115 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
15 | 9, 13, 14 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
16 | 15 | frnd 6608 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran (ℝ D 𝐹) ⊆
ℝ) |
17 | 16 | sselda 3921 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ℝ) |
18 | | 0re 10977 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
19 | | lttri2 11057 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑥 ≠ 0
↔ (𝑥 < 0 ∨ 0
< 𝑥))) |
20 | 17, 18, 19 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 < 0 ∨ 0 < 𝑥))) |
21 | | 0xr 11022 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* |
22 | | elioomnf 13176 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ* → (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (-∞(,)0) ↔
(𝑥 ∈ ℝ ∧
𝑥 < 0)) |
24 | 23 | baib 536 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ (-∞(,)0) ↔
𝑥 < 0)) |
25 | | elrp 12732 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
↔ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
26 | 25 | baib 536 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ ℝ+
↔ 0 < 𝑥)) |
27 | 24, 26 | orbi12d 916 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → ((𝑥 ∈ (-∞(,)0) ∨
𝑥 ∈
ℝ+) ↔ (𝑥 < 0 ∨ 0 < 𝑥))) |
28 | 17, 27 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ran (ℝ D 𝐹)) → ((𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈ ℝ+)
↔ (𝑥 < 0 ∨ 0
< 𝑥))) |
29 | 20, 28 | bitr4d 281 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ≠ 0 ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈
ℝ+))) |
30 | 6, 29 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ran (ℝ D 𝐹)) → (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈
ℝ+)) |
31 | | elun 4083 |
. . . . . . . 8
⊢ (𝑥 ∈ ((-∞(,)0) ∪
ℝ+) ↔ (𝑥 ∈ (-∞(,)0) ∨ 𝑥 ∈
ℝ+)) |
32 | 30, 31 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ran (ℝ D 𝐹)) → 𝑥 ∈ ((-∞(,)0) ∪
ℝ+)) |
33 | 32 | ex 413 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → 𝑥 ∈ ((-∞(,)0) ∪
ℝ+))) |
34 | 33 | ssrdv 3927 |
. . . . 5
⊢ (𝜑 → ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪
ℝ+)) |
35 | | disjssun 4401 |
. . . . 5
⊢ ((ran
(ℝ D 𝐹) ∩
(-∞(,)0)) = ∅ → (ran (ℝ D 𝐹) ⊆ ((-∞(,)0) ∪
ℝ+) ↔ ran (ℝ D 𝐹) ⊆
ℝ+)) |
36 | 34, 35 | syl5ibcom 244 |
. . . 4
⊢ (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) =
∅ → ran (ℝ D 𝐹) ⊆
ℝ+)) |
37 | 36 | imp 407 |
. . 3
⊢ ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) =
∅) → ran (ℝ D 𝐹) ⊆
ℝ+) |
38 | 10 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+)
→ 𝐴 ∈
ℝ) |
39 | 11 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+)
→ 𝐵 ∈
ℝ) |
40 | 7 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+)
→ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
41 | | dvne0.d |
. . . . . . . . . 10
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
42 | 41 | feq2d 6586 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℝ)) |
43 | 15, 42 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ) |
44 | 43 | ffnd 6601 |
. . . . . . 7
⊢ (𝜑 → (ℝ D 𝐹) Fn (𝐴(,)𝐵)) |
45 | 44 | anim1i 615 |
. . . . . 6
⊢ ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+)
→ ((ℝ D 𝐹) Fn
(𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆
ℝ+)) |
46 | | df-f 6437 |
. . . . . 6
⊢ ((ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℝ+ ↔
((ℝ D 𝐹) Fn (𝐴(,)𝐵) ∧ ran (ℝ D 𝐹) ⊆
ℝ+)) |
47 | 45, 46 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+)
→ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+) |
48 | 38, 39, 40, 47 | dvgt0 25168 |
. . . 4
⊢ ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+)
→ 𝐹 Isom < , <
((𝐴[,]𝐵), ran 𝐹)) |
49 | 48 | orcd 870 |
. . 3
⊢ ((𝜑 ∧ ran (ℝ D 𝐹) ⊆ ℝ+)
→ (𝐹 Isom < , <
((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))) |
50 | 37, 49 | syldan 591 |
. 2
⊢ ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) =
∅) → (𝐹 Isom
< , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))) |
51 | | n0 4280 |
. . . 4
⊢ ((ran
(ℝ D 𝐹) ∩
(-∞(,)0)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0))) |
52 | | elin 3903 |
. . . . . 6
⊢ (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ↔
(𝑥 ∈ ran (ℝ D
𝐹) ∧ 𝑥 ∈ (-∞(,)0))) |
53 | | fvelrnb 6830 |
. . . . . . . . 9
⊢ ((ℝ
D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥)) |
54 | 44, 53 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥)) |
55 | 10 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐴 ∈
ℝ) |
56 | 11 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐵 ∈
ℝ) |
57 | 7 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
58 | 44 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D
𝐹) Fn (𝐴(,)𝐵)) |
59 | 43 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D
𝐹):(𝐴(,)𝐵)⟶ℝ) |
60 | 59 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ) |
61 | 1 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D
𝐹)) |
62 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑦 ∈ (𝐴(,)𝐵)) |
63 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 𝑧 ∈ (𝐴(,)𝐵)) |
64 | | ioossicc 13165 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
65 | | rescncf 24060 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))) |
66 | 64, 7, 65 | mpsyl 68 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
67 | 66 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
68 | | ax-resscn 10928 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ℝ
⊆ ℂ |
69 | 68 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ℝ ⊆
ℂ) |
70 | | fss 6617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
71 | 9, 68, 70 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
72 | 64, 13 | sstrid 3932 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
73 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
74 | 73 | tgioo2 23966 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
75 | 73, 74 | dvres 25075 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝐴(,)𝐵)))) |
76 | 69, 71, 13, 72, 75 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝐴(,)𝐵)))) |
77 | | retop 23925 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(topGen‘ran (,)) ∈ Top |
78 | | iooretop 23929 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
79 | | isopn3i 22233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ∈ (topGen‘ran (,))) →
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
80 | 77, 78, 79 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵) |
81 | 80 | reseq2i 5888 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((ℝ
D 𝐹) ↾
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) |
82 | | fnresdm 6551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((ℝ
D 𝐹) Fn (𝐴(,)𝐵) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹)) |
83 | 44, 82 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (ℝ D 𝐹)) |
84 | 81, 83 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((ℝ D 𝐹) ↾
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) = (ℝ D 𝐹)) |
85 | 76, 84 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹)) |
86 | 85 | dmeqd 5814 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = dom (ℝ D 𝐹)) |
87 | 86, 41 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵)) |
88 | 87 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → dom (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (𝐴(,)𝐵)) |
89 | 62, 63, 67, 88 | dvivth 25174 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) ⊆ ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵)))) |
90 | 85 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = (ℝ D 𝐹)) |
91 | 90 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦) = ((ℝ D 𝐹)‘𝑦)) |
92 | 90 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧) = ((ℝ D 𝐹)‘𝑧)) |
93 | 91, 92 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑦)[,]((ℝ D (𝐹 ↾ (𝐴(,)𝐵)))‘𝑧)) = (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧))) |
94 | 90 | rneqd 5847 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ran (ℝ D (𝐹 ↾ (𝐴(,)𝐵))) = ran (ℝ D 𝐹)) |
95 | 89, 93, 94 | 3sstr3d 3967 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ⊆ ran (ℝ D 𝐹)) |
96 | 18 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ℝ) |
97 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0)) |
98 | | elioomnf 13176 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 ∈
ℝ* → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D
𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0))) |
99 | 21, 98 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ (((ℝ D
𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0)) |
100 | 97, 99 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑦) < 0)) |
101 | 100 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) < 0) |
102 | 100 | simpld 495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ) |
103 | | ltle 11063 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ)
→ (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0)) |
104 | 102, 18, 103 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (((ℝ D 𝐹)‘𝑦) < 0 → ((ℝ D 𝐹)‘𝑦) ≤ 0)) |
105 | 101, 104 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑦) ≤ 0) |
106 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ≤ ((ℝ D 𝐹)‘𝑧)) |
107 | 63, 60 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → ((ℝ D 𝐹)‘𝑧) ∈ ℝ) |
108 | | elicc2 13144 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((ℝ D 𝐹)‘𝑦) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) ∈ ℝ) → (0 ∈ (((ℝ
D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D
𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧)))) |
109 | 102, 107,
108 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → (0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧)) ↔ (0 ∈ ℝ ∧ ((ℝ D
𝐹)‘𝑦) ≤ 0 ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧)))) |
110 | 96, 105, 106, 109 | mpbir3and 1341 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ (((ℝ D 𝐹)‘𝑦)[,]((ℝ D 𝐹)‘𝑧))) |
111 | 95, 110 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ (𝑧 ∈ (𝐴(,)𝐵) ∧ 0 ≤ ((ℝ D 𝐹)‘𝑧))) → 0 ∈ ran (ℝ D 𝐹)) |
112 | 111 | expr 457 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (0 ≤ ((ℝ D 𝐹)‘𝑧) → 0 ∈ ran (ℝ D 𝐹))) |
113 | 61, 112 | mtod 197 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ≤ ((ℝ D 𝐹)‘𝑧)) |
114 | | ltnle 11054 |
. . . . . . . . . . . . . . . . . 18
⊢
((((ℝ D 𝐹)‘𝑧) ∈ ℝ ∧ 0 ∈ ℝ)
→ (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D
𝐹)‘𝑧))) |
115 | 60, 18, 114 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) < 0 ↔ ¬ 0 ≤ ((ℝ D
𝐹)‘𝑧))) |
116 | 113, 115 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) < 0) |
117 | | elioomnf 13176 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
ℝ* → (((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D
𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0))) |
118 | 21, 117 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0) ↔ (((ℝ D
𝐹)‘𝑧) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑧) < 0)) |
119 | 60, 116, 118 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0)) |
120 | 119 | ralrimiva 3103 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) →
∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0)) |
121 | | ffnfv 6992 |
. . . . . . . . . . . . . 14
⊢ ((ℝ
D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0) ↔ ((ℝ D
𝐹) Fn (𝐴(,)𝐵) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑧) ∈ (-∞(,)0))) |
122 | 58, 120, 121 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (ℝ D
𝐹):(𝐴(,)𝐵)⟶(-∞(,)0)) |
123 | 55, 56, 57, 122 | dvlt0 25169 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)) |
124 | 123 | olcd 871 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0))) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))) |
125 | 124 | expr 457 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)))) |
126 | | eleq1 2826 |
. . . . . . . . . . 11
⊢
(((ℝ D 𝐹)‘𝑦) = 𝑥 → (((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) ↔ 𝑥 ∈
(-∞(,)0))) |
127 | 126 | imbi1d 342 |
. . . . . . . . . 10
⊢
(((ℝ D 𝐹)‘𝑦) = 𝑥 → ((((ℝ D 𝐹)‘𝑦) ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))) ↔ (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))))) |
128 | 125, 127 | syl5ibcom 244 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))))) |
129 | 128 | rexlimdva 3213 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑦 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑦) = 𝑥 → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))))) |
130 | 54, 129 | sylbid 239 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ran (ℝ D 𝐹) → (𝑥 ∈ (-∞(,)0) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))))) |
131 | 130 | impd 411 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ran (ℝ D 𝐹) ∧ 𝑥 ∈ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)))) |
132 | 52, 131 | syl5bi 241 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)))) |
133 | 132 | exlimdv 1936 |
. . . 4
⊢ (𝜑 → (∃𝑥 𝑥 ∈ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)))) |
134 | 51, 133 | syl5bi 241 |
. . 3
⊢ (𝜑 → ((ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠
∅ → (𝐹 Isom <
, < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)))) |
135 | 134 | imp 407 |
. 2
⊢ ((𝜑 ∧ (ran (ℝ D 𝐹) ∩ (-∞(,)0)) ≠
∅) → (𝐹 Isom
< , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))) |
136 | 50, 135 | pm2.61dane 3032 |
1
⊢ (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))) |