![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlksnexthasheq | Structured version Visualization version GIF version |
Description: The number of the extensions of a walk (as word) by an edge equals the number of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 23-Aug-2018.) (Revised by AV, 19-Apr-2021.) (Revised by AV, 27-Oct-2022.) |
Ref | Expression |
---|---|
wwlksnexthasheq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wwlksnexthasheq.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
wwlksnexthasheq | ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) = (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7464 | . . 3 ⊢ ((𝑁 + 1) WWalksN 𝐺) ∈ V | |
2 | 1 | rabex 5345 | . 2 ⊢ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∈ V |
3 | wwlksnexthasheq.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | wwlksnexthasheq.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | 3, 4 | wwlksnextbij 29932 | . 2 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}) |
6 | hasheqf1oi 14387 | . 2 ⊢ ({𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}–1-1-onto→{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) = (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}))) | |
7 | 2, 5, 6 | mpsyl 68 | 1 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) = (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {crab 3433 Vcvv 3478 {cpr 4633 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 1c1 11154 + caddc 11156 ♯chash 14366 lastSclsw 14597 prefix cpfx 14705 Vtxcvtx 29028 Edgcedg 29079 WWalksN cwwlksn 29856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-lsw 14598 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-wwlks 29860 df-wwlksn 29861 |
This theorem is referenced by: rusgrnumwwlks 30004 |
Copyright terms: Public domain | W3C validator |