![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmqseqi | Structured version Visualization version GIF version |
Description: Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
dmqseqi.1 | ⊢ 𝑅 = 𝑆 |
Ref | Expression |
---|---|
dmqseqi | ⊢ (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmqseqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
2 | dmqseq 37510 | . 2 ⊢ (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 dom cdm 5677 / cqs 8702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ec 8705 df-qs 8709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |