Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqseqi Structured version   Visualization version   GIF version

Theorem dmqseqi 37511
Description: Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.)
Hypothesis
Ref Expression
dmqseqi.1 𝑅 = 𝑆
Assertion
Ref Expression
dmqseqi (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)

Proof of Theorem dmqseqi
StepHypRef Expression
1 dmqseqi.1 . 2 𝑅 = 𝑆
2 dmqseq 37510 . 2 (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
31, 2ax-mp 5 1 (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  dom cdm 5677   / cqs 8702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ec 8705  df-qs 8709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator