Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqseqi Structured version   Visualization version   GIF version

Theorem dmqseqi 38635
Description: Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.)
Hypothesis
Ref Expression
dmqseqi.1 𝑅 = 𝑆
Assertion
Ref Expression
dmqseqi (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)

Proof of Theorem dmqseqi
StepHypRef Expression
1 dmqseqi.1 . 2 𝑅 = 𝑆
2 dmqseq 38634 . 2 (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
31, 2ax-mp 5 1 (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  dom cdm 5690   / cqs 8749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5150  df-opab 5212  df-cnv 5698  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-ec 8752  df-qs 8756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator