| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmqseqi | Structured version Visualization version GIF version | ||
| Description: Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| Ref | Expression |
|---|---|
| dmqseqi.1 | ⊢ 𝑅 = 𝑆 |
| Ref | Expression |
|---|---|
| dmqseqi | ⊢ (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmqseqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
| 2 | dmqseq 38625 | . 2 ⊢ (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 dom cdm 5646 / cqs 8681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-cnv 5654 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ec 8684 df-qs 8688 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |