Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqseqi Structured version   Visualization version   GIF version

Theorem dmqseqi 38677
Description: Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.)
Hypothesis
Ref Expression
dmqseqi.1 𝑅 = 𝑆
Assertion
Ref Expression
dmqseqi (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)

Proof of Theorem dmqseqi
StepHypRef Expression
1 dmqseqi.1 . 2 𝑅 = 𝑆
2 dmqseq 38676 . 2 (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
31, 2ax-mp 5 1 (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  dom cdm 5616   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ec 8624  df-qs 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator