Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqseqi Structured version   Visualization version   GIF version

Theorem dmqseqi 38626
Description: Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.)
Hypothesis
Ref Expression
dmqseqi.1 𝑅 = 𝑆
Assertion
Ref Expression
dmqseqi (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)

Proof of Theorem dmqseqi
StepHypRef Expression
1 dmqseqi.1 . 2 𝑅 = 𝑆
2 dmqseq 38625 . 2 (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
31, 2ax-mp 5 1 (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  dom cdm 5646   / cqs 8681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-cnv 5654  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-ec 8684  df-qs 8688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator