Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqseqd Structured version   Visualization version   GIF version

Theorem dmqseqd 37500
Description: Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.)
Hypothesis
Ref Expression
dmqseqd.1 (𝜑𝑅 = 𝑆)
Assertion
Ref Expression
dmqseqd (𝜑 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))

Proof of Theorem dmqseqd
StepHypRef Expression
1 dmqseqd.1 . 2 (𝜑𝑅 = 𝑆)
2 dmqseq 37498 . 2 (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
31, 2syl 17 1 (𝜑 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  dom cdm 5675   / cqs 8698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ec 8701  df-qs 8705
This theorem is referenced by:  releldmqs  37516  releldmqscoss  37518
  Copyright terms: Public domain W3C validator