![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmqseqd | Structured version Visualization version GIF version |
Description: Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.) |
Ref | Expression |
---|---|
dmqseqd.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
Ref | Expression |
---|---|
dmqseqd | ⊢ (𝜑 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmqseqd.1 | . 2 ⊢ (𝜑 → 𝑅 = 𝑆) | |
2 | dmqseq 37498 | . 2 ⊢ (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 dom cdm 5675 / cqs 8698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ec 8701 df-qs 8705 |
This theorem is referenced by: releldmqs 37516 releldmqscoss 37518 |
Copyright terms: Public domain | W3C validator |