MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord3ex Structured version   Visualization version   GIF version

Theorem ord3ex 5337
Description: The ordinal number 3 is a set, proved without the Axiom of Union ax-un 7691. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
ord3ex {∅, {∅}, {∅, {∅}}} ∈ V

Proof of Theorem ord3ex
StepHypRef Expression
1 df-tp 4590 . 2 {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}})
2 pwpr 4861 . . . 4 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
3 pp0ex 5336 . . . . 5 {∅, {∅}} ∈ V
43pwex 5330 . . . 4 𝒫 {∅, {∅}} ∈ V
52, 4eqeltrri 2825 . . 3 ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V
6 snsspr2 4775 . . . 4 {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}}
7 unss2 4146 . . . 4 ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}))
86, 7ax-mp 5 . . 3 ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
95, 8ssexi 5272 . 2 ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V
101, 9eqeltri 2824 1 {∅, {∅}, {∅, {∅}}} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3444  cun 3909  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585  {cpr 4587  {ctp 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator