Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ord3ex | Structured version Visualization version GIF version |
Description: The ordinal number 3 is a set, proved without the Axiom of Union ax-un 7588. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
ord3ex | ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4566 | . 2 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
2 | pwpr 4833 | . . . 4 ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) | |
3 | pp0ex 5309 | . . . . 5 ⊢ {∅, {∅}} ∈ V | |
4 | 3 | pwex 5303 | . . . 4 ⊢ 𝒫 {∅, {∅}} ∈ V |
5 | 2, 4 | eqeltrri 2836 | . . 3 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V |
6 | snsspr2 4748 | . . . 4 ⊢ {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} | |
7 | unss2 4115 | . . . 4 ⊢ ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
9 | 5, 8 | ssexi 5246 | . 2 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V |
10 | 1, 9 | eqeltri 2835 | 1 ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 {cpr 4563 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |