MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord3ex Structured version   Visualization version   GIF version

Theorem ord3ex 5323
Description: The ordinal number 3 is a set, proved without the Axiom of Union ax-un 7668. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
ord3ex {∅, {∅}, {∅, {∅}}} ∈ V

Proof of Theorem ord3ex
StepHypRef Expression
1 df-tp 4578 . 2 {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}})
2 pwpr 4850 . . . 4 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
3 pp0ex 5322 . . . . 5 {∅, {∅}} ∈ V
43pwex 5316 . . . 4 𝒫 {∅, {∅}} ∈ V
52, 4eqeltrri 2828 . . 3 ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V
6 snsspr2 4764 . . . 4 {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}}
7 unss2 4134 . . . 4 ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}))
86, 7ax-mp 5 . . 3 ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
95, 8ssexi 5258 . 2 ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V
101, 9eqeltri 2827 1 {∅, {∅}, {∅, {∅}}} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  cun 3895  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573  {cpr 4575  {ctp 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator