MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord3ex Structured version   Visualization version   GIF version

Theorem ord3ex 5310
Description: The ordinal number 3 is a set, proved without the Axiom of Union ax-un 7588. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
ord3ex {∅, {∅}, {∅, {∅}}} ∈ V

Proof of Theorem ord3ex
StepHypRef Expression
1 df-tp 4566 . 2 {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}})
2 pwpr 4833 . . . 4 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
3 pp0ex 5309 . . . . 5 {∅, {∅}} ∈ V
43pwex 5303 . . . 4 𝒫 {∅, {∅}} ∈ V
52, 4eqeltrri 2836 . . 3 ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V
6 snsspr2 4748 . . . 4 {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}}
7 unss2 4115 . . . 4 ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}))
86, 7ax-mp 5 . . 3 ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
95, 8ssexi 5246 . 2 ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V
101, 9eqeltri 2835 1 {∅, {∅}, {∅, {∅}}} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432  cun 3885  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  {cpr 4563  {ctp 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator