![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ord3ex | Structured version Visualization version GIF version |
Description: The ordinal number 3 is a set, proved without the Axiom of Union ax-un 7770. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
ord3ex | ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4653 | . 2 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
2 | pwpr 4925 | . . . 4 ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) | |
3 | pp0ex 5404 | . . . . 5 ⊢ {∅, {∅}} ∈ V | |
4 | 3 | pwex 5398 | . . . 4 ⊢ 𝒫 {∅, {∅}} ∈ V |
5 | 2, 4 | eqeltrri 2841 | . . 3 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V |
6 | snsspr2 4840 | . . . 4 ⊢ {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} | |
7 | unss2 4210 | . . . 4 ⊢ ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
9 | 5, 8 | ssexi 5340 | . 2 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V |
10 | 1, 9 | eqeltri 2840 | 1 ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 {cpr 4650 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |