| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord3ex | Structured version Visualization version GIF version | ||
| Description: The ordinal number 3 is a set, proved without the Axiom of Union ax-un 7675. (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| ord3ex | ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4584 | . 2 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
| 2 | pwpr 4855 | . . . 4 ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) | |
| 3 | pp0ex 5328 | . . . . 5 ⊢ {∅, {∅}} ∈ V | |
| 4 | 3 | pwex 5322 | . . . 4 ⊢ 𝒫 {∅, {∅}} ∈ V |
| 5 | 2, 4 | eqeltrri 2825 | . . 3 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V |
| 6 | snsspr2 4769 | . . . 4 ⊢ {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} | |
| 7 | unss2 4140 | . . . 4 ⊢ ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
| 9 | 5, 8 | ssexi 5264 | . 2 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V |
| 10 | 1, 9 | eqeltri 2824 | 1 ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 {cpr 4581 {ctp 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |