| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord3ex | Structured version Visualization version GIF version | ||
| Description: The ordinal number 3 is a set, proved without the Axiom of Union ax-un 7727. (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| ord3ex | ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4606 | . 2 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
| 2 | pwpr 4877 | . . . 4 ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) | |
| 3 | pp0ex 5356 | . . . . 5 ⊢ {∅, {∅}} ∈ V | |
| 4 | 3 | pwex 5350 | . . . 4 ⊢ 𝒫 {∅, {∅}} ∈ V |
| 5 | 2, 4 | eqeltrri 2831 | . . 3 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V |
| 6 | snsspr2 4791 | . . . 4 ⊢ {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} | |
| 7 | unss2 4162 | . . . 4 ⊢ ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
| 9 | 5, 8 | ssexi 5292 | . 2 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V |
| 10 | 1, 9 | eqeltri 2830 | 1 ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 {csn 4601 {cpr 4603 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |