Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eceq1i Structured version   Visualization version   GIF version

Theorem eceq1i 38211
Description: Equality theorem for 𝐶-coset of 𝐴 and 𝐶-coset of 𝐵, inference version. (Contributed by Peter Mazsa, 11-May-2021.)
Hypothesis
Ref Expression
eceq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
eceq1i [𝐴]𝐶 = [𝐵]𝐶

Proof of Theorem eceq1i
StepHypRef Expression
1 eceq1i.1 . 2 𝐴 = 𝐵
2 eceq1 8765 . 2 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
31, 2ax-mp 5 1 [𝐴]𝐶 = [𝐵]𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  [cec 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator