Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eceq1i Structured version   Visualization version   GIF version

Theorem eceq1i 37648
Description: Equality theorem for 𝐶-coset of 𝐴 and 𝐶-coset of 𝐵, inference version. (Contributed by Peter Mazsa, 11-May-2021.)
Hypothesis
Ref Expression
eceq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
eceq1i [𝐴]𝐶 = [𝐵]𝐶

Proof of Theorem eceq1i
StepHypRef Expression
1 eceq1i.1 . 2 𝐴 = 𝐵
2 eceq1 8738 . 2 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
31, 2ax-mp 5 1 [𝐴]𝐶 = [𝐵]𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  [cec 8698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ec 8702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator