Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eceq1i Structured version   Visualization version   GIF version

Theorem eceq1i 37742
Description: Equality theorem for 𝐶-coset of 𝐴 and 𝐶-coset of 𝐵, inference version. (Contributed by Peter Mazsa, 11-May-2021.)
Hypothesis
Ref Expression
eceq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
eceq1i [𝐴]𝐶 = [𝐵]𝐶

Proof of Theorem eceq1i
StepHypRef Expression
1 eceq1i.1 . 2 𝐴 = 𝐵
2 eceq1 8756 . 2 (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
31, 2ax-mp 5 1 [𝐴]𝐶 = [𝐵]𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  [cec 8716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ec 8720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator