![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eceq1i | Structured version Visualization version GIF version |
Description: Equality theorem for 𝐶-coset of 𝐴 and 𝐶-coset of 𝐵, inference version. (Contributed by Peter Mazsa, 11-May-2021.) |
Ref | Expression |
---|---|
eceq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eceq1i | ⊢ [𝐴]𝐶 = [𝐵]𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eceq1 8763 | . 2 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ [𝐴]𝐶 = [𝐵]𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 [cec 8723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ec 8727 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |