Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elecres | Structured version Visualization version GIF version |
Description: Elementhood in the restricted coset of 𝐵. (Contributed by Peter Mazsa, 21-Sep-2018.) |
Ref | Expression |
---|---|
elecres | ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5908 | . . 3 ⊢ Rel (𝑅 ↾ 𝐴) | |
2 | relelec 8478 | . . 3 ⊢ (Rel (𝑅 ↾ 𝐴) → (𝐶 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ 𝐵(𝑅 ↾ 𝐴)𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐶 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ 𝐵(𝑅 ↾ 𝐴)𝐶) |
4 | brres 5886 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
5 | 3, 4 | syl5bb 286 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2112 class class class wbr 5070 ↾ cres 5581 Rel wrel 5584 [cec 8431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5585 df-rel 5586 df-cnv 5587 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-ec 8435 |
This theorem is referenced by: ecres 36319 ecres2 36320 |
Copyright terms: Public domain | W3C validator |