Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elecres Structured version   Visualization version   GIF version

Theorem elecres 38262
Description: Elementhood in the restricted coset of 𝐵. (Contributed by Peter Mazsa, 21-Sep-2018.)
Assertion
Ref Expression
elecres (𝐶𝑉 → (𝐶 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝐶)))

Proof of Theorem elecres
StepHypRef Expression
1 relres 5984 . . 3 Rel (𝑅𝐴)
2 relelec 8729 . . 3 (Rel (𝑅𝐴) → (𝐶 ∈ [𝐵](𝑅𝐴) ↔ 𝐵(𝑅𝐴)𝐶))
31, 2ax-mp 5 . 2 (𝐶 ∈ [𝐵](𝑅𝐴) ↔ 𝐵(𝑅𝐴)𝐶)
4 brres 5965 . 2 (𝐶𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
53, 4bitrid 283 1 (𝐶𝑉 → (𝐶 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5115  cres 5648  Rel wrel 5651  [cec 8680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-xp 5652  df-rel 5653  df-cnv 5654  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-ec 8684
This theorem is referenced by:  ecres  38263  ecres2  38264
  Copyright terms: Public domain W3C validator