Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elecres Structured version   Visualization version   GIF version

Theorem elecres 38212
Description: Elementhood in the restricted coset of 𝐵. (Contributed by Peter Mazsa, 21-Sep-2018.)
Assertion
Ref Expression
elecres (𝐶𝑉 → (𝐶 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝐶)))

Proof of Theorem elecres
StepHypRef Expression
1 relres 6003 . . 3 Rel (𝑅𝐴)
2 relelec 8773 . . 3 (Rel (𝑅𝐴) → (𝐶 ∈ [𝐵](𝑅𝐴) ↔ 𝐵(𝑅𝐴)𝐶))
31, 2ax-mp 5 . 2 (𝐶 ∈ [𝐵](𝑅𝐴) ↔ 𝐵(𝑅𝐴)𝐶)
4 brres 5984 . 2 (𝐶𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
53, 4bitrid 283 1 (𝐶𝑉 → (𝐶 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107   class class class wbr 5123  cres 5667  Rel wrel 5670  [cec 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8728
This theorem is referenced by:  ecres  38213  ecres2  38214
  Copyright terms: Public domain W3C validator