Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmres2 Structured version   Visualization version   GIF version

Theorem eldmres2 38298
Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 21-Aug-2020.)
Assertion
Ref Expression
eldmres2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝑦 ∈ [𝐵]𝑅)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅   𝑦,𝑉

Proof of Theorem eldmres2
StepHypRef Expression
1 eldmres 38293 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
2 eldmg 5883 . . . 4 (𝐵𝑉 → (𝐵 ∈ dom 𝑅 ↔ ∃𝑦 𝐵𝑅𝑦))
3 eldm4 38297 . . . 4 (𝐵𝑉 → (𝐵 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐵]𝑅))
42, 3bitr3d 281 . . 3 (𝐵𝑉 → (∃𝑦 𝐵𝑅𝑦 ↔ ∃𝑦 𝑦 ∈ [𝐵]𝑅))
54anbi2d 630 . 2 (𝐵𝑉 → ((𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ↔ (𝐵𝐴 ∧ ∃𝑦 𝑦 ∈ [𝐵]𝑅)))
61, 5bitrd 279 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝑦 ∈ [𝐵]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109   class class class wbr 5124  dom cdm 5659  cres 5661  [cec 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726
This theorem is referenced by:  eldmqsres  38310
  Copyright terms: Public domain W3C validator