Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnopf | Structured version Visualization version GIF version |
Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopf | ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellnop 30121 | . 2 ⊢ (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 LinOpclo 29210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-lnop 30104 |
This theorem is referenced by: bdopf 30125 elbdop2 30134 unopadj2 30201 lnop0 30229 lnopmul 30230 lnopfi 30232 homco2 30240 nmopun 30277 cnlnadjeui 30340 cnlnssadj 30343 |
Copyright terms: Public domain | W3C validator |