![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdopln | Structured version Visualization version GIF version |
Description: A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bdopln | ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbdop 31892 | . 2 ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 +∞cpnf 11321 < clt 11324 normopcnop 30977 LinOpclo 30979 BndLinOpcbo 30980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-bdop 31874 |
This theorem is referenced by: bdopf 31894 nmbdoplbi 32056 bdophmi 32064 lncnopbd 32069 nmopcoi 32127 bdophsi 32128 bdopcoi 32130 nmopcoadj0i 32135 unierri 32136 |
Copyright terms: Public domain | W3C validator |