HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bdopln Structured version   Visualization version   GIF version

Theorem bdopln 31893
Description: A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
bdopln (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)

Proof of Theorem bdopln
StepHypRef Expression
1 elbdop 31892 . 2 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))
21simplbi 497 1 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166  cfv 6573  +∞cpnf 11321   < clt 11324  normopcnop 30977  LinOpclo 30979  BndLinOpcbo 30980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-bdop 31874
This theorem is referenced by:  bdopf  31894  nmbdoplbi  32056  bdophmi  32064  lncnopbd  32069  nmopcoi  32127  bdophsi  32128  bdopcoi  32130  nmopcoadj0i  32135  unierri  32136
  Copyright terms: Public domain W3C validator