| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > bdopln | Structured version Visualization version GIF version | ||
| Description: A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bdopln | ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbdop 31789 | . 2 ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 +∞cpnf 11205 < clt 11208 normopcnop 30874 LinOpclo 30876 BndLinOpcbo 30877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-bdop 31771 |
| This theorem is referenced by: bdopf 31791 nmbdoplbi 31953 bdophmi 31961 lncnopbd 31966 nmopcoi 32024 bdophsi 32025 bdopcoi 32027 nmopcoadj0i 32032 unierri 32033 |
| Copyright terms: Public domain | W3C validator |