Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > bdopln | Structured version Visualization version GIF version |
Description: A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bdopln | ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbdop 29941 | . 2 ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) | |
2 | 1 | simplbi 501 | 1 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 +∞cpnf 10864 < clt 10867 normopcnop 29026 LinOpclo 29028 BndLinOpcbo 29029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-bdop 29923 |
This theorem is referenced by: bdopf 29943 nmbdoplbi 30105 bdophmi 30113 lncnopbd 30118 nmopcoi 30176 bdophsi 30177 bdopcoi 30179 nmopcoadj0i 30184 unierri 30185 |
Copyright terms: Public domain | W3C validator |