HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bdopln Structured version   Visualization version   GIF version

Theorem bdopln 30124
Description: A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
bdopln (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)

Proof of Theorem bdopln
StepHypRef Expression
1 elbdop 30123 . 2 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))
21simplbi 497 1 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  cfv 6418  +∞cpnf 10937   < clt 10940  normopcnop 29208  LinOpclo 29210  BndLinOpcbo 29211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-bdop 30105
This theorem is referenced by:  bdopf  30125  nmbdoplbi  30287  bdophmi  30295  lncnopbd  30300  nmopcoi  30358  bdophsi  30359  bdopcoi  30361  nmopcoadj0i  30366  unierri  30367
  Copyright terms: Public domain W3C validator