![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdopln | Structured version Visualization version GIF version |
Description: A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bdopln | ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbdop 31888 | . 2 ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5147 ‘cfv 6562 +∞cpnf 11289 < clt 11292 normopcnop 30973 LinOpclo 30975 BndLinOpcbo 30976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-bdop 31870 |
This theorem is referenced by: bdopf 31890 nmbdoplbi 32052 bdophmi 32060 lncnopbd 32065 nmopcoi 32123 bdophsi 32124 bdopcoi 32126 nmopcoadj0i 32131 unierri 32132 |
Copyright terms: Public domain | W3C validator |