HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bdopln Structured version   Visualization version   GIF version

Theorem bdopln 31788
Description: A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
bdopln (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)

Proof of Theorem bdopln
StepHypRef Expression
1 elbdop 31787 . 2 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))
21simplbi 497 1 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5119  cfv 6530  +∞cpnf 11264   < clt 11267  normopcnop 30872  LinOpclo 30874  BndLinOpcbo 30875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-bdop 31769
This theorem is referenced by:  bdopf  31789  nmbdoplbi  31951  bdophmi  31959  lncnopbd  31964  nmopcoi  32022  bdophsi  32023  bdopcoi  32025  nmopcoadj0i  32030  unierri  32031
  Copyright terms: Public domain W3C validator