Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > bdopln | Structured version Visualization version GIF version |
Description: A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bdopln | ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbdop 30123 | . 2 ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 +∞cpnf 10937 < clt 10940 normopcnop 29208 LinOpclo 29210 BndLinOpcbo 29211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-bdop 30105 |
This theorem is referenced by: bdopf 30125 nmbdoplbi 30287 bdophmi 30295 lncnopbd 30300 nmopcoi 30358 bdophsi 30359 bdopcoi 30361 nmopcoadj0i 30366 unierri 30367 |
Copyright terms: Public domain | W3C validator |