HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopre Structured version   Visualization version   GIF version

Theorem nmopre 31698
Description: The norm of a bounded operator is a real number. (Contributed by NM, 29-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopre (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)

Proof of Theorem nmopre
StepHypRef Expression
1 bdopf 31690 . . 3 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
2 nmopgtmnf 31696 . . 3 (𝑇: ℋ⟶ ℋ → -∞ < (normop𝑇))
31, 2syl 17 . 2 (𝑇 ∈ BndLinOp → -∞ < (normop𝑇))
4 elbdop 31688 . . 3 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))
54simprbi 495 . 2 (𝑇 ∈ BndLinOp → (normop𝑇) < +∞)
6 nmopxr 31694 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) ∈ ℝ*)
7 xrrebnd 13185 . . 3 ((normop𝑇) ∈ ℝ* → ((normop𝑇) ∈ ℝ ↔ (-∞ < (normop𝑇) ∧ (normop𝑇) < +∞)))
81, 6, 73syl 18 . 2 (𝑇 ∈ BndLinOp → ((normop𝑇) ∈ ℝ ↔ (-∞ < (normop𝑇) ∧ (normop𝑇) < +∞)))
93, 5, 8mpbir2and 711 1 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098   class class class wbr 5150  wf 6547  cfv 6551  cr 11143  +∞cpnf 11281  -∞cmnf 11282  *cxr 11283   < clt 11284  chba 30747  normopcnop 30773  LinOpclo 30775  BndLinOpcbo 30776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222  ax-hilex 30827  ax-hfvadd 30828  ax-hvcom 30829  ax-hvass 30830  ax-hv0cl 30831  ax-hvaddid 30832  ax-hfvmul 30833  ax-hvmulid 30834  ax-hvmulass 30835  ax-hvdistr1 30836  ax-hvdistr2 30837  ax-hvmul0 30838  ax-hfi 30907  ax-his1 30910  ax-his2 30911  ax-his3 30912  ax-his4 30913
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9471  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-seq 14005  df-exp 14065  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-grpo 30321  df-gid 30322  df-ablo 30373  df-vc 30387  df-nv 30420  df-va 30423  df-ba 30424  df-sm 30425  df-0v 30426  df-nmcv 30428  df-hnorm 30796  df-hba 30797  df-hvsub 30799  df-nmop 31667  df-lnop 31669  df-bdop 31670
This theorem is referenced by:  nmbdoplbi  31852  nmophmi  31859  bdophmi  31860  lnopcnbd  31864  nmopadjlem  31917  nmopadji  31918  nmoptrii  31922  nmopcoi  31923  bdophsi  31924  bdopcoi  31926  nmoptri2i  31927  nmopcoadji  31929  nmopcoadj0i  31931  unierri  31932
  Copyright terms: Public domain W3C validator