![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvlem | Structured version Visualization version GIF version |
Description: Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.) |
Ref | Expression |
---|---|
elcnvlem.f | ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ ⟨(2nd ‘𝑥), (1st ‘𝑥)⟩) |
Ref | Expression |
---|---|
elcnvlem | ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcnv2 5867 | . 2 ⊢ (𝐴 ∈ ◡𝐵 ↔ ∃𝑢∃𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ ⟨𝑣, 𝑢⟩ ∈ 𝐵)) | |
2 | fveq2 6881 | . . . . 5 ⊢ (𝐴 = ⟨𝑢, 𝑣⟩ → (𝐹‘𝐴) = (𝐹‘⟨𝑢, 𝑣⟩)) | |
3 | vex 3470 | . . . . . . 7 ⊢ 𝑢 ∈ V | |
4 | vex 3470 | . . . . . . 7 ⊢ 𝑣 ∈ V | |
5 | 3, 4 | opelvv 5706 | . . . . . 6 ⊢ ⟨𝑢, 𝑣⟩ ∈ (V × V) |
6 | 3, 4 | op2ndd 7979 | . . . . . . . 8 ⊢ (𝑥 = ⟨𝑢, 𝑣⟩ → (2nd ‘𝑥) = 𝑣) |
7 | 3, 4 | op1std 7978 | . . . . . . . 8 ⊢ (𝑥 = ⟨𝑢, 𝑣⟩ → (1st ‘𝑥) = 𝑢) |
8 | 6, 7 | opeq12d 4873 | . . . . . . 7 ⊢ (𝑥 = ⟨𝑢, 𝑣⟩ → ⟨(2nd ‘𝑥), (1st ‘𝑥)⟩ = ⟨𝑣, 𝑢⟩) |
9 | elcnvlem.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ ⟨(2nd ‘𝑥), (1st ‘𝑥)⟩) | |
10 | opex 5454 | . . . . . . 7 ⊢ ⟨𝑣, 𝑢⟩ ∈ V | |
11 | 8, 9, 10 | fvmpt 6988 | . . . . . 6 ⊢ (⟨𝑢, 𝑣⟩ ∈ (V × V) → (𝐹‘⟨𝑢, 𝑣⟩) = ⟨𝑣, 𝑢⟩) |
12 | 5, 11 | ax-mp 5 | . . . . 5 ⊢ (𝐹‘⟨𝑢, 𝑣⟩) = ⟨𝑣, 𝑢⟩ |
13 | 2, 12 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = ⟨𝑢, 𝑣⟩ → (𝐹‘𝐴) = ⟨𝑣, 𝑢⟩) |
14 | 13 | eleq1d 2810 | . . 3 ⊢ (𝐴 = ⟨𝑢, 𝑣⟩ → ((𝐹‘𝐴) ∈ 𝐵 ↔ ⟨𝑣, 𝑢⟩ ∈ 𝐵)) |
15 | 14 | copsex2gb 5796 | . 2 ⊢ (∃𝑢∃𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ ⟨𝑣, 𝑢⟩ ∈ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
16 | 1, 15 | bitri 275 | 1 ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3466 ⟨cop 4626 ↦ cmpt 5221 × cxp 5664 ◡ccnv 5665 ‘cfv 6533 1st c1st 7966 2nd c2nd 7967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fv 6541 df-1st 7968 df-2nd 7969 |
This theorem is referenced by: elcnvintab 42808 |
Copyright terms: Public domain | W3C validator |