Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvlem | Structured version Visualization version GIF version |
Description: Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.) |
Ref | Expression |
---|---|
elcnvlem.f | ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) |
Ref | Expression |
---|---|
elcnvlem | ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcnv2 5786 | . 2 ⊢ (𝐴 ∈ ◡𝐵 ↔ ∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ 〈𝑣, 𝑢〉 ∈ 𝐵)) | |
2 | fveq2 6774 | . . . . 5 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → (𝐹‘𝐴) = (𝐹‘〈𝑢, 𝑣〉)) | |
3 | vex 3436 | . . . . . . 7 ⊢ 𝑢 ∈ V | |
4 | vex 3436 | . . . . . . 7 ⊢ 𝑣 ∈ V | |
5 | 3, 4 | opelvv 5628 | . . . . . 6 ⊢ 〈𝑢, 𝑣〉 ∈ (V × V) |
6 | 3, 4 | op2ndd 7842 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → (2nd ‘𝑥) = 𝑣) |
7 | 3, 4 | op1std 7841 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → (1st ‘𝑥) = 𝑢) |
8 | 6, 7 | opeq12d 4812 | . . . . . . 7 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → 〈(2nd ‘𝑥), (1st ‘𝑥)〉 = 〈𝑣, 𝑢〉) |
9 | elcnvlem.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) | |
10 | opex 5379 | . . . . . . 7 ⊢ 〈𝑣, 𝑢〉 ∈ V | |
11 | 8, 9, 10 | fvmpt 6875 | . . . . . 6 ⊢ (〈𝑢, 𝑣〉 ∈ (V × V) → (𝐹‘〈𝑢, 𝑣〉) = 〈𝑣, 𝑢〉) |
12 | 5, 11 | ax-mp 5 | . . . . 5 ⊢ (𝐹‘〈𝑢, 𝑣〉) = 〈𝑣, 𝑢〉 |
13 | 2, 12 | eqtrdi 2794 | . . . 4 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → (𝐹‘𝐴) = 〈𝑣, 𝑢〉) |
14 | 13 | eleq1d 2823 | . . 3 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → ((𝐹‘𝐴) ∈ 𝐵 ↔ 〈𝑣, 𝑢〉 ∈ 𝐵)) |
15 | 14 | copsex2gb 5716 | . 2 ⊢ (∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ 〈𝑣, 𝑢〉 ∈ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
16 | 1, 15 | bitri 274 | 1 ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 〈cop 4567 ↦ cmpt 5157 × cxp 5587 ◡ccnv 5588 ‘cfv 6433 1st c1st 7829 2nd c2nd 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: elcnvintab 41210 |
Copyright terms: Public domain | W3C validator |