Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvlem Structured version   Visualization version   GIF version

Theorem elcnvlem 41209
Description: Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.)
Hypothesis
Ref Expression
elcnvlem.f 𝐹 = (𝑥 ∈ (V × V) ↦ ⟨(2nd𝑥), (1st𝑥)⟩)
Assertion
Ref Expression
elcnvlem (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹𝐴) ∈ 𝐵))

Proof of Theorem elcnvlem
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 5786 . 2 (𝐴𝐵 ↔ ∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ ⟨𝑣, 𝑢⟩ ∈ 𝐵))
2 fveq2 6774 . . . . 5 (𝐴 = ⟨𝑢, 𝑣⟩ → (𝐹𝐴) = (𝐹‘⟨𝑢, 𝑣⟩))
3 vex 3436 . . . . . . 7 𝑢 ∈ V
4 vex 3436 . . . . . . 7 𝑣 ∈ V
53, 4opelvv 5628 . . . . . 6 𝑢, 𝑣⟩ ∈ (V × V)
63, 4op2ndd 7842 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (2nd𝑥) = 𝑣)
73, 4op1std 7841 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (1st𝑥) = 𝑢)
86, 7opeq12d 4812 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → ⟨(2nd𝑥), (1st𝑥)⟩ = ⟨𝑣, 𝑢⟩)
9 elcnvlem.f . . . . . . 7 𝐹 = (𝑥 ∈ (V × V) ↦ ⟨(2nd𝑥), (1st𝑥)⟩)
10 opex 5379 . . . . . . 7 𝑣, 𝑢⟩ ∈ V
118, 9, 10fvmpt 6875 . . . . . 6 (⟨𝑢, 𝑣⟩ ∈ (V × V) → (𝐹‘⟨𝑢, 𝑣⟩) = ⟨𝑣, 𝑢⟩)
125, 11ax-mp 5 . . . . 5 (𝐹‘⟨𝑢, 𝑣⟩) = ⟨𝑣, 𝑢
132, 12eqtrdi 2794 . . . 4 (𝐴 = ⟨𝑢, 𝑣⟩ → (𝐹𝐴) = ⟨𝑣, 𝑢⟩)
1413eleq1d 2823 . . 3 (𝐴 = ⟨𝑢, 𝑣⟩ → ((𝐹𝐴) ∈ 𝐵 ↔ ⟨𝑣, 𝑢⟩ ∈ 𝐵))
1514copsex2gb 5716 . 2 (∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ ⟨𝑣, 𝑢⟩ ∈ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ (𝐹𝐴) ∈ 𝐵))
161, 15bitri 274 1 (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cop 4567  cmpt 5157   × cxp 5587  ccnv 5588  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  elcnvintab  41210
  Copyright terms: Public domain W3C validator