![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvlem | Structured version Visualization version GIF version |
Description: Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.) |
Ref | Expression |
---|---|
elcnvlem.f | ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) |
Ref | Expression |
---|---|
elcnvlem | ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcnv2 5902 | . 2 ⊢ (𝐴 ∈ ◡𝐵 ↔ ∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ 〈𝑣, 𝑢〉 ∈ 𝐵)) | |
2 | fveq2 6920 | . . . . 5 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → (𝐹‘𝐴) = (𝐹‘〈𝑢, 𝑣〉)) | |
3 | vex 3492 | . . . . . . 7 ⊢ 𝑢 ∈ V | |
4 | vex 3492 | . . . . . . 7 ⊢ 𝑣 ∈ V | |
5 | 3, 4 | opelvv 5740 | . . . . . 6 ⊢ 〈𝑢, 𝑣〉 ∈ (V × V) |
6 | 3, 4 | op2ndd 8041 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → (2nd ‘𝑥) = 𝑣) |
7 | 3, 4 | op1std 8040 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → (1st ‘𝑥) = 𝑢) |
8 | 6, 7 | opeq12d 4905 | . . . . . . 7 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → 〈(2nd ‘𝑥), (1st ‘𝑥)〉 = 〈𝑣, 𝑢〉) |
9 | elcnvlem.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) | |
10 | opex 5484 | . . . . . . 7 ⊢ 〈𝑣, 𝑢〉 ∈ V | |
11 | 8, 9, 10 | fvmpt 7029 | . . . . . 6 ⊢ (〈𝑢, 𝑣〉 ∈ (V × V) → (𝐹‘〈𝑢, 𝑣〉) = 〈𝑣, 𝑢〉) |
12 | 5, 11 | ax-mp 5 | . . . . 5 ⊢ (𝐹‘〈𝑢, 𝑣〉) = 〈𝑣, 𝑢〉 |
13 | 2, 12 | eqtrdi 2796 | . . . 4 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → (𝐹‘𝐴) = 〈𝑣, 𝑢〉) |
14 | 13 | eleq1d 2829 | . . 3 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → ((𝐹‘𝐴) ∈ 𝐵 ↔ 〈𝑣, 𝑢〉 ∈ 𝐵)) |
15 | 14 | copsex2gb 5830 | . 2 ⊢ (∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ 〈𝑣, 𝑢〉 ∈ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
16 | 1, 15 | bitri 275 | 1 ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: elcnvintab 43564 |
Copyright terms: Public domain | W3C validator |