Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvlem | Structured version Visualization version GIF version |
Description: Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.) |
Ref | Expression |
---|---|
elcnvlem.f | ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) |
Ref | Expression |
---|---|
elcnvlem | ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcnv2 5775 | . 2 ⊢ (𝐴 ∈ ◡𝐵 ↔ ∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ 〈𝑣, 𝑢〉 ∈ 𝐵)) | |
2 | fveq2 6756 | . . . . 5 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → (𝐹‘𝐴) = (𝐹‘〈𝑢, 𝑣〉)) | |
3 | vex 3426 | . . . . . . 7 ⊢ 𝑢 ∈ V | |
4 | vex 3426 | . . . . . . 7 ⊢ 𝑣 ∈ V | |
5 | 3, 4 | opelvv 5619 | . . . . . 6 ⊢ 〈𝑢, 𝑣〉 ∈ (V × V) |
6 | 3, 4 | op2ndd 7815 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → (2nd ‘𝑥) = 𝑣) |
7 | 3, 4 | op1std 7814 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → (1st ‘𝑥) = 𝑢) |
8 | 6, 7 | opeq12d 4809 | . . . . . . 7 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → 〈(2nd ‘𝑥), (1st ‘𝑥)〉 = 〈𝑣, 𝑢〉) |
9 | elcnvlem.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) | |
10 | opex 5373 | . . . . . . 7 ⊢ 〈𝑣, 𝑢〉 ∈ V | |
11 | 8, 9, 10 | fvmpt 6857 | . . . . . 6 ⊢ (〈𝑢, 𝑣〉 ∈ (V × V) → (𝐹‘〈𝑢, 𝑣〉) = 〈𝑣, 𝑢〉) |
12 | 5, 11 | ax-mp 5 | . . . . 5 ⊢ (𝐹‘〈𝑢, 𝑣〉) = 〈𝑣, 𝑢〉 |
13 | 2, 12 | eqtrdi 2795 | . . . 4 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → (𝐹‘𝐴) = 〈𝑣, 𝑢〉) |
14 | 13 | eleq1d 2823 | . . 3 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → ((𝐹‘𝐴) ∈ 𝐵 ↔ 〈𝑣, 𝑢〉 ∈ 𝐵)) |
15 | 14 | copsex2gb 5705 | . 2 ⊢ (∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ 〈𝑣, 𝑢〉 ∈ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
16 | 1, 15 | bitri 274 | 1 ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ↦ cmpt 5153 × cxp 5578 ◡ccnv 5579 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: elcnvintab 41099 |
Copyright terms: Public domain | W3C validator |