Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvlem Structured version   Visualization version   GIF version

Theorem elcnvlem 40301
Description: Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.)
Hypothesis
Ref Expression
elcnvlem.f 𝐹 = (𝑥 ∈ (V × V) ↦ ⟨(2nd𝑥), (1st𝑥)⟩)
Assertion
Ref Expression
elcnvlem (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹𝐴) ∈ 𝐵))

Proof of Theorem elcnvlem
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 5712 . 2 (𝐴𝐵 ↔ ∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ ⟨𝑣, 𝑢⟩ ∈ 𝐵))
2 fveq2 6645 . . . . 5 (𝐴 = ⟨𝑢, 𝑣⟩ → (𝐹𝐴) = (𝐹‘⟨𝑢, 𝑣⟩))
3 vex 3444 . . . . . . 7 𝑢 ∈ V
4 vex 3444 . . . . . . 7 𝑣 ∈ V
53, 4opelvv 5558 . . . . . 6 𝑢, 𝑣⟩ ∈ (V × V)
63, 4op2ndd 7682 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (2nd𝑥) = 𝑣)
73, 4op1std 7681 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (1st𝑥) = 𝑢)
86, 7opeq12d 4773 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → ⟨(2nd𝑥), (1st𝑥)⟩ = ⟨𝑣, 𝑢⟩)
9 elcnvlem.f . . . . . . 7 𝐹 = (𝑥 ∈ (V × V) ↦ ⟨(2nd𝑥), (1st𝑥)⟩)
10 opex 5321 . . . . . . 7 𝑣, 𝑢⟩ ∈ V
118, 9, 10fvmpt 6745 . . . . . 6 (⟨𝑢, 𝑣⟩ ∈ (V × V) → (𝐹‘⟨𝑢, 𝑣⟩) = ⟨𝑣, 𝑢⟩)
125, 11ax-mp 5 . . . . 5 (𝐹‘⟨𝑢, 𝑣⟩) = ⟨𝑣, 𝑢
132, 12eqtrdi 2849 . . . 4 (𝐴 = ⟨𝑢, 𝑣⟩ → (𝐹𝐴) = ⟨𝑣, 𝑢⟩)
1413eleq1d 2874 . . 3 (𝐴 = ⟨𝑢, 𝑣⟩ → ((𝐹𝐴) ∈ 𝐵 ↔ ⟨𝑣, 𝑢⟩ ∈ 𝐵))
1514copsex2gb 5643 . 2 (∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ ⟨𝑣, 𝑢⟩ ∈ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ (𝐹𝐴) ∈ 𝐵))
161, 15bitri 278 1 (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  cop 4531  cmpt 5110   × cxp 5517  ccnv 5518  cfv 6324  1st c1st 7669  2nd c2nd 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fv 6332  df-1st 7671  df-2nd 7672
This theorem is referenced by:  elcnvintab  40302
  Copyright terms: Public domain W3C validator