Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvlem Structured version   Visualization version   GIF version

Theorem elcnvlem 41098
Description: Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.)
Hypothesis
Ref Expression
elcnvlem.f 𝐹 = (𝑥 ∈ (V × V) ↦ ⟨(2nd𝑥), (1st𝑥)⟩)
Assertion
Ref Expression
elcnvlem (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹𝐴) ∈ 𝐵))

Proof of Theorem elcnvlem
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 5775 . 2 (𝐴𝐵 ↔ ∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ ⟨𝑣, 𝑢⟩ ∈ 𝐵))
2 fveq2 6756 . . . . 5 (𝐴 = ⟨𝑢, 𝑣⟩ → (𝐹𝐴) = (𝐹‘⟨𝑢, 𝑣⟩))
3 vex 3426 . . . . . . 7 𝑢 ∈ V
4 vex 3426 . . . . . . 7 𝑣 ∈ V
53, 4opelvv 5619 . . . . . 6 𝑢, 𝑣⟩ ∈ (V × V)
63, 4op2ndd 7815 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (2nd𝑥) = 𝑣)
73, 4op1std 7814 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (1st𝑥) = 𝑢)
86, 7opeq12d 4809 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → ⟨(2nd𝑥), (1st𝑥)⟩ = ⟨𝑣, 𝑢⟩)
9 elcnvlem.f . . . . . . 7 𝐹 = (𝑥 ∈ (V × V) ↦ ⟨(2nd𝑥), (1st𝑥)⟩)
10 opex 5373 . . . . . . 7 𝑣, 𝑢⟩ ∈ V
118, 9, 10fvmpt 6857 . . . . . 6 (⟨𝑢, 𝑣⟩ ∈ (V × V) → (𝐹‘⟨𝑢, 𝑣⟩) = ⟨𝑣, 𝑢⟩)
125, 11ax-mp 5 . . . . 5 (𝐹‘⟨𝑢, 𝑣⟩) = ⟨𝑣, 𝑢
132, 12eqtrdi 2795 . . . 4 (𝐴 = ⟨𝑢, 𝑣⟩ → (𝐹𝐴) = ⟨𝑣, 𝑢⟩)
1413eleq1d 2823 . . 3 (𝐴 = ⟨𝑢, 𝑣⟩ → ((𝐹𝐴) ∈ 𝐵 ↔ ⟨𝑣, 𝑢⟩ ∈ 𝐵))
1514copsex2gb 5705 . 2 (∃𝑢𝑣(𝐴 = ⟨𝑢, 𝑣⟩ ∧ ⟨𝑣, 𝑢⟩ ∈ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ (𝐹𝐴) ∈ 𝐵))
161, 15bitri 274 1 (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cop 4564  cmpt 5153   × cxp 5578  ccnv 5579  cfv 6418  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  elcnvintab  41099
  Copyright terms: Public domain W3C validator