| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrab2f | Structured version Visualization version GIF version | ||
| Description: Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ssrab2f.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| ssrab2f | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrab1 3429 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 2 | ssrab2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 1, 2 | dfss3f 3941 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}𝑥 ∈ 𝐴) |
| 4 | rabidim1 3431 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | |
| 5 | 3, 4 | mprgbir 3052 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Ⅎwnfc 2877 {crab 3408 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 df-ss 3934 |
| This theorem is referenced by: dmmptssf 45233 mptssid 45242 fnlimfvre 45679 limsupequzmpt2 45723 liminfequzmpt2 45796 pimltpnff 46708 pimgtmnff 46727 smflimlem2 46777 smflim 46782 smfpimcclem 46812 smfsupxr 46821 smfpimne2 46845 |
| Copyright terms: Public domain | W3C validator |