Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrab2f Structured version   Visualization version   GIF version

Theorem ssrab2f 42619
Description: Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ssrab2f.1 𝑥𝐴
Assertion
Ref Expression
ssrab2f {𝑥𝐴𝜑} ⊆ 𝐴

Proof of Theorem ssrab2f
StepHypRef Expression
1 nfrab1 3315 . . 3 𝑥{𝑥𝐴𝜑}
2 ssrab2f.1 . . 3 𝑥𝐴
31, 2dfss3f 3916 . 2 ({𝑥𝐴𝜑} ⊆ 𝐴 ↔ ∀𝑥 ∈ {𝑥𝐴𝜑}𝑥𝐴)
4 rabidim1 3310 . 2 (𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)
53, 4mprgbir 3080 1 {𝑥𝐴𝜑} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wnfc 2888  {crab 3069  wss 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rab 3074  df-v 3432  df-in 3898  df-ss 3908
This theorem is referenced by:  dmmptssf  42728  mptssid  42738  fnlimfvre  43169  limsupequzmpt2  43213  liminfequzmpt2  43286  smflimlem2  44258  smflim  44263  smfpimcclem  44291  smfsupxr  44300
  Copyright terms: Public domain W3C validator