Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrab2f | Structured version Visualization version GIF version |
Description: Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ssrab2f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
ssrab2f | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 3336 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | ssrab2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | dfss3f 3917 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}𝑥 ∈ 𝐴) |
4 | rabidim1 3331 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | |
5 | 3, 4 | mprgbir 3069 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 Ⅎwnfc 2885 {crab 3303 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rab 3306 df-v 3439 df-in 3899 df-ss 3909 |
This theorem is referenced by: dmmptssf 42996 mptssid 43006 fnlimfvre 43444 limsupequzmpt2 43488 liminfequzmpt2 43561 pimltpnff 44471 pimgtmnff 44490 smflimlem2 44540 smflim 44545 smfpimcclem 44575 smfsupxr 44584 smfpimne2 44608 |
Copyright terms: Public domain | W3C validator |