| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrab2f | Structured version Visualization version GIF version | ||
| Description: Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ssrab2f.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| ssrab2f | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrab1 3416 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 2 | ssrab2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 1, 2 | dfss3f 3922 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}𝑥 ∈ 𝐴) |
| 4 | rabidim1 3418 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | |
| 5 | 3, 4 | mprgbir 3055 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Ⅎwnfc 2880 {crab 3396 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rab 3397 df-ss 3915 |
| This theorem is referenced by: dmmptssf 45353 mptssid 45362 fnlimfvre 45796 limsupequzmpt2 45840 liminfequzmpt2 45913 pimltpnff 46825 pimgtmnff 46844 smflimlem2 46894 smflim 46899 smfpimcclem 46929 smfsupxr 46938 smfpimne2 46962 |
| Copyright terms: Public domain | W3C validator |