Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrab2f Structured version   Visualization version   GIF version

Theorem ssrab2f 45095
Description: Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ssrab2f.1 𝑥𝐴
Assertion
Ref Expression
ssrab2f {𝑥𝐴𝜑} ⊆ 𝐴

Proof of Theorem ssrab2f
StepHypRef Expression
1 nfrab1 3417 . . 3 𝑥{𝑥𝐴𝜑}
2 ssrab2f.1 . . 3 𝑥𝐴
31, 2dfss3f 3929 . 2 ({𝑥𝐴𝜑} ⊆ 𝐴 ↔ ∀𝑥 ∈ {𝑥𝐴𝜑}𝑥𝐴)
4 rabidim1 3419 . 2 (𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)
53, 4mprgbir 3051 1 {𝑥𝐴𝜑} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wnfc 2876  {crab 3396  wss 3905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3397  df-ss 3922
This theorem is referenced by:  dmmptssf  45210  mptssid  45219  fnlimfvre  45656  limsupequzmpt2  45700  liminfequzmpt2  45773  pimltpnff  46685  pimgtmnff  46704  smflimlem2  46754  smflim  46759  smfpimcclem  46789  smfsupxr  46798  smfpimne2  46822
  Copyright terms: Public domain W3C validator