![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrab2f | Structured version Visualization version GIF version |
Description: Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ssrab2f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
ssrab2f | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 3333 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | ssrab2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | dfss3f 3819 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}𝑥 ∈ 𝐴) |
4 | rabidim1 3328 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | |
5 | 3, 4 | mprgbir 3136 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2164 Ⅎwnfc 2956 {crab 3121 ⊆ wss 3798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rab 3126 df-in 3805 df-ss 3812 |
This theorem is referenced by: dmmptssf 40239 mptssid 40249 fnlimfvre 40699 limsupequzmpt2 40743 liminfequzmpt2 40816 smflimlem2 41772 smflim 41777 smfpimcclem 41805 smfsupxr 41814 |
Copyright terms: Public domain | W3C validator |