![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrab2f | Structured version Visualization version GIF version |
Description: Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ssrab2f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
ssrab2f | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 3464 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | ssrab2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | dfss3f 4000 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}𝑥 ∈ 𝐴) |
4 | rabidim1 3466 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | |
5 | 3, 4 | mprgbir 3074 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Ⅎwnfc 2893 {crab 3443 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-ss 3993 |
This theorem is referenced by: dmmptssf 45139 mptssid 45149 fnlimfvre 45595 limsupequzmpt2 45639 liminfequzmpt2 45712 pimltpnff 46624 pimgtmnff 46643 smflimlem2 46693 smflim 46698 smfpimcclem 46728 smfsupxr 46737 smfpimne2 46761 |
Copyright terms: Public domain | W3C validator |