Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliuniin2 Structured version   Visualization version   GIF version

Theorem eliuniin2 42558
Description: Indexed union of indexed intersections. See eliincex 42549 for a counterexample showing that the precondition 𝐶 ≠ ∅ cannot be simply dropped. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
eliuniin2.1 𝑥𝐶
eliuniin2.2 𝐴 = 𝑥𝐵 𝑦𝐶 𝐷
Assertion
Ref Expression
eliuniin2 (𝐶 ≠ ∅ → (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐶   𝑥,𝑍   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥)   𝐷(𝑥,𝑦)

Proof of Theorem eliuniin2
StepHypRef Expression
1 eliuniin2.2 . . . . 5 𝐴 = 𝑥𝐵 𝑦𝐶 𝐷
21eleq2i 2830 . . . 4 (𝑍𝐴𝑍 𝑥𝐵 𝑦𝐶 𝐷)
3 eliun 4925 . . . 4 (𝑍 𝑥𝐵 𝑦𝐶 𝐷 ↔ ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
42, 3sylbb 218 . . 3 (𝑍𝐴 → ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
5 eliin 4926 . . . . . 6 (𝑍 𝑦𝐶 𝐷 → (𝑍 𝑦𝐶 𝐷 ↔ ∀𝑦𝐶 𝑍𝐷))
65ibi 266 . . . . 5 (𝑍 𝑦𝐶 𝐷 → ∀𝑦𝐶 𝑍𝐷)
76a1i 11 . . . 4 (𝑍𝐴 → (𝑍 𝑦𝐶 𝐷 → ∀𝑦𝐶 𝑍𝐷))
87reximdv 3201 . . 3 (𝑍𝐴 → (∃𝑥𝐵 𝑍 𝑦𝐶 𝐷 → ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
94, 8mpd 15 . 2 (𝑍𝐴 → ∃𝑥𝐵𝑦𝐶 𝑍𝐷)
10 eliuniin2.1 . . . 4 𝑥𝐶
11 nfcv 2906 . . . 4 𝑥
1210, 11nfne 3044 . . 3 𝑥 𝐶 ≠ ∅
13 nfv 1918 . . 3 𝑥 𝑍𝐴
14 simp2 1135 . . . . . . 7 ((𝐶 ≠ ∅ ∧ 𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑥𝐵)
15 eliin2 42554 . . . . . . . 8 (𝐶 ≠ ∅ → (𝑍 𝑦𝐶 𝐷 ↔ ∀𝑦𝐶 𝑍𝐷))
1615biimpar 477 . . . . . . 7 ((𝐶 ≠ ∅ ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑍 𝑦𝐶 𝐷)
17 rspe 3232 . . . . . . 7 ((𝑥𝐵𝑍 𝑦𝐶 𝐷) → ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
1814, 16, 173imp3i2an 1343 . . . . . 6 ((𝐶 ≠ ∅ ∧ 𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
1918, 3sylibr 233 . . . . 5 ((𝐶 ≠ ∅ ∧ 𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑍 𝑥𝐵 𝑦𝐶 𝐷)
2019, 2sylibr 233 . . . 4 ((𝐶 ≠ ∅ ∧ 𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑍𝐴)
21203exp 1117 . . 3 (𝐶 ≠ ∅ → (𝑥𝐵 → (∀𝑦𝐶 𝑍𝐷𝑍𝐴)))
2212, 13, 21rexlimd 3245 . 2 (𝐶 ≠ ∅ → (∃𝑥𝐵𝑦𝐶 𝑍𝐷𝑍𝐴))
239, 22impbid2 225 1 (𝐶 ≠ ∅ → (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  wnfc 2886  wne 2942  wral 3063  wrex 3064  c0 4253   ciun 4921   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-nul 4254  df-iun 4923  df-iin 4924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator