Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliuniin2 Structured version   Visualization version   GIF version

Theorem eliuniin2 45125
Description: Indexed union of indexed intersections. See eliincex 45115 for a counterexample showing that the precondition 𝐶 ≠ ∅ cannot be simply dropped. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
eliuniin2.1 𝑥𝐶
eliuniin2.2 𝐴 = 𝑥𝐵 𝑦𝐶 𝐷
Assertion
Ref Expression
eliuniin2 (𝐶 ≠ ∅ → (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐶   𝑥,𝑍   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥)   𝐷(𝑥,𝑦)

Proof of Theorem eliuniin2
StepHypRef Expression
1 eliuniin2.2 . . . . 5 𝐴 = 𝑥𝐵 𝑦𝐶 𝐷
21eleq2i 2833 . . . 4 (𝑍𝐴𝑍 𝑥𝐵 𝑦𝐶 𝐷)
3 eliun 4995 . . . 4 (𝑍 𝑥𝐵 𝑦𝐶 𝐷 ↔ ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
42, 3sylbb 219 . . 3 (𝑍𝐴 → ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
5 eliin 4996 . . . . . 6 (𝑍 𝑦𝐶 𝐷 → (𝑍 𝑦𝐶 𝐷 ↔ ∀𝑦𝐶 𝑍𝐷))
65ibi 267 . . . . 5 (𝑍 𝑦𝐶 𝐷 → ∀𝑦𝐶 𝑍𝐷)
76a1i 11 . . . 4 (𝑍𝐴 → (𝑍 𝑦𝐶 𝐷 → ∀𝑦𝐶 𝑍𝐷))
87reximdv 3170 . . 3 (𝑍𝐴 → (∃𝑥𝐵 𝑍 𝑦𝐶 𝐷 → ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
94, 8mpd 15 . 2 (𝑍𝐴 → ∃𝑥𝐵𝑦𝐶 𝑍𝐷)
10 eliuniin2.1 . . . 4 𝑥𝐶
11 nfcv 2905 . . . 4 𝑥
1210, 11nfne 3043 . . 3 𝑥 𝐶 ≠ ∅
13 nfv 1914 . . 3 𝑥 𝑍𝐴
14 simp2 1138 . . . . . . 7 ((𝐶 ≠ ∅ ∧ 𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑥𝐵)
15 eliin2 45121 . . . . . . . 8 (𝐶 ≠ ∅ → (𝑍 𝑦𝐶 𝐷 ↔ ∀𝑦𝐶 𝑍𝐷))
1615biimpar 477 . . . . . . 7 ((𝐶 ≠ ∅ ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑍 𝑦𝐶 𝐷)
17 rspe 3249 . . . . . . 7 ((𝑥𝐵𝑍 𝑦𝐶 𝐷) → ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
1814, 16, 173imp3i2an 1346 . . . . . 6 ((𝐶 ≠ ∅ ∧ 𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → ∃𝑥𝐵 𝑍 𝑦𝐶 𝐷)
1918, 3sylibr 234 . . . . 5 ((𝐶 ≠ ∅ ∧ 𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑍 𝑥𝐵 𝑦𝐶 𝐷)
2019, 2sylibr 234 . . . 4 ((𝐶 ≠ ∅ ∧ 𝑥𝐵 ∧ ∀𝑦𝐶 𝑍𝐷) → 𝑍𝐴)
21203exp 1120 . . 3 (𝐶 ≠ ∅ → (𝑥𝐵 → (∀𝑦𝐶 𝑍𝐷𝑍𝐴)))
2212, 13, 21rexlimd 3266 . 2 (𝐶 ≠ ∅ → (∃𝑥𝐵𝑦𝐶 𝑍𝐷𝑍𝐴))
239, 22impbid2 226 1 (𝐶 ≠ ∅ → (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  wnfc 2890  wne 2940  wral 3061  wrex 3070  c0 4333   ciun 4991   ciin 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-nul 4334  df-iun 4993  df-iin 4994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator