![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > allbutfi | Structured version Visualization version GIF version |
Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 43773 and eliuniin2 43794 (here, the precondition can be dropped; see eliuniincex 43783). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
allbutfi.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
allbutfi.a | ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 |
Ref | Expression |
---|---|
allbutfi | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | allbutfi.a | . . . . . 6 ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 | |
2 | 1 | eleq2i 2825 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
4 | eliun 5000 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) | |
5 | 3, 4 | sylib 217 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
6 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑛𝑋 | |
7 | nfiu1 5030 | . . . . . 6 ⊢ Ⅎ𝑛∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 | |
8 | 1, 7 | nfcxfr 2901 | . . . . 5 ⊢ Ⅎ𝑛𝐴 |
9 | 6, 8 | nfel 2917 | . . . 4 ⊢ Ⅎ𝑛 𝑋 ∈ 𝐴 |
10 | eliin 5001 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) | |
11 | 10 | biimpd 228 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
12 | 11 | a1d 25 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵))) |
13 | 9, 12 | reximdai 3258 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
14 | 5, 13 | mpd 15 | . 2 ⊢ (𝑋 ∈ 𝐴 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
15 | simpr 485 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) | |
16 | allbutfi.z | . . . . . . . . . . . . 13 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
17 | 16 | eleq2i 2825 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
18 | 17 | biimpi 215 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
19 | eluzelz 12828 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℤ) | |
20 | uzid 12833 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ≥‘𝑛)) | |
21 | 18, 19, 20 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑛)) |
22 | 21 | ne0d 4334 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
23 | eliin2 43790 | . . . . . . . . 9 ⊢ ((ℤ≥‘𝑛) ≠ ∅ → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
25 | 24 | adantr 481 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
26 | 15, 25 | mpbird 256 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
27 | 26 | ex 413 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵)) |
28 | 27 | reximia 3081 | . . . 4 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
29 | 28, 4 | sylibr 233 | . . 3 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
30 | 29, 1 | eleqtrrdi 2844 | . 2 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐴) |
31 | 14, 30 | impbii 208 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∅c0 4321 ∪ ciun 4996 ∩ ciin 4997 ‘cfv 6540 ℤcz 12554 ℤ≥cuz 12818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-neg 11443 df-z 12555 df-uz 12819 |
This theorem is referenced by: allbutfiinf 44116 allbutfifvre 44377 smflimlem3 45475 smfliminflem 45532 |
Copyright terms: Public domain | W3C validator |