Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfi Structured version   Visualization version   GIF version

Theorem allbutfi 44675
Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 44363 and eliuniin2 44384 (here, the precondition can be dropped; see eliuniincex 44373). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
allbutfi.z 𝑍 = (ℤ𝑀)
allbutfi.a 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
Assertion
Ref Expression
allbutfi (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
Distinct variable group:   𝑚,𝑋,𝑛
Allowed substitution hints:   𝐴(𝑚,𝑛)   𝐵(𝑚,𝑛)   𝑀(𝑚,𝑛)   𝑍(𝑚,𝑛)

Proof of Theorem allbutfi
StepHypRef Expression
1 allbutfi.a . . . . . 6 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
21eleq2i 2819 . . . . 5 (𝑋𝐴𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
32biimpi 215 . . . 4 (𝑋𝐴𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
4 eliun 4994 . . . 4 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
53, 4sylib 217 . . 3 (𝑋𝐴 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
6 nfcv 2897 . . . . 5 𝑛𝑋
7 nfiu1 5024 . . . . . 6 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
81, 7nfcxfr 2895 . . . . 5 𝑛𝐴
96, 8nfel 2911 . . . 4 𝑛 𝑋𝐴
10 eliin 4995 . . . . . 6 (𝑋𝐴 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1110biimpd 228 . . . . 5 (𝑋𝐴 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1211a1d 25 . . . 4 (𝑋𝐴 → (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵)))
139, 12reximdai 3252 . . 3 (𝑋𝐴 → (∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵))
145, 13mpd 15 . 2 (𝑋𝐴 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
15 simpr 484 . . . . . . 7 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵)
16 allbutfi.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
1716eleq2i 2819 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1817biimpi 215 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
19 eluzelz 12836 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
20 uzid 12841 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
2118, 19, 203syl 18 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
2221ne0d 4330 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
23 eliin2 44380 . . . . . . . . 9 ((ℤ𝑛) ≠ ∅ → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2422, 23syl 17 . . . . . . . 8 (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2524adantr 480 . . . . . . 7 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2615, 25mpbird 257 . . . . . 6 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
2726ex 412 . . . . 5 (𝑛𝑍 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋 𝑚 ∈ (ℤ𝑛)𝐵))
2827reximia 3075 . . . 4 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
2928, 4sylibr 233 . . 3 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
3029, 1eleqtrrdi 2838 . 2 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋𝐴)
3114, 30impbii 208 1 (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2934  wral 3055  wrex 3064  c0 4317   ciun 4990   ciin 4991  cfv 6537  cz 12562  cuz 12826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-neg 11451  df-z 12563  df-uz 12827
This theorem is referenced by:  allbutfiinf  44702  allbutfifvre  44963  smflimlem3  46061  smfliminflem  46118
  Copyright terms: Public domain W3C validator