| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > allbutfi | Structured version Visualization version GIF version | ||
| Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 45071 and eliuniin2 45092 (here, the precondition can be dropped; see eliuniincex 45081). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| allbutfi.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| allbutfi.a | ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 |
| Ref | Expression |
|---|---|
| allbutfi | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | allbutfi.a | . . . . . 6 ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 | |
| 2 | 1 | eleq2i 2826 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 4 | eliun 4971 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 6 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑛𝑋 | |
| 7 | nfiu1 5003 | . . . . . 6 ⊢ Ⅎ𝑛∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 | |
| 8 | 1, 7 | nfcxfr 2896 | . . . . 5 ⊢ Ⅎ𝑛𝐴 |
| 9 | 6, 8 | nfel 2913 | . . . 4 ⊢ Ⅎ𝑛 𝑋 ∈ 𝐴 |
| 10 | eliin 4972 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) | |
| 11 | 10 | biimpd 229 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
| 12 | 11 | a1d 25 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵))) |
| 13 | 9, 12 | reximdai 3244 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
| 14 | 5, 13 | mpd 15 | . 2 ⊢ (𝑋 ∈ 𝐴 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
| 15 | simpr 484 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) | |
| 16 | allbutfi.z | . . . . . . . . . . . . 13 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 17 | 16 | eleq2i 2826 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
| 18 | 17 | biimpi 216 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 19 | eluzelz 12860 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℤ) | |
| 20 | uzid 12865 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ≥‘𝑛)) | |
| 21 | 18, 19, 20 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑛)) |
| 22 | 21 | ne0d 4317 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
| 23 | eliin2 45088 | . . . . . . . . 9 ⊢ ((ℤ≥‘𝑛) ≠ ∅ → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) | |
| 24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
| 25 | 24 | adantr 480 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
| 26 | 15, 25 | mpbird 257 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 27 | 26 | ex 412 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵)) |
| 28 | 27 | reximia 3071 | . . . 4 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 29 | 28, 4 | sylibr 234 | . . 3 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 30 | 29, 1 | eleqtrrdi 2845 | . 2 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐴) |
| 31 | 14, 30 | impbii 209 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ∅c0 4308 ∪ ciun 4967 ∩ ciin 4968 ‘cfv 6530 ℤcz 12586 ℤ≥cuz 12850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-neg 11467 df-z 12587 df-uz 12851 |
| This theorem is referenced by: allbutfiinf 45395 allbutfifvre 45652 smflimlem3 46750 smfliminflem 46807 |
| Copyright terms: Public domain | W3C validator |