Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfi Structured version   Visualization version   GIF version

Theorem allbutfi 42441
Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 42153 and eliuniin2 42173 (here, the precondition can be dropped; see eliuniincex 42163). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
allbutfi.z 𝑍 = (ℤ𝑀)
allbutfi.a 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
Assertion
Ref Expression
allbutfi (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
Distinct variable group:   𝑚,𝑋,𝑛
Allowed substitution hints:   𝐴(𝑚,𝑛)   𝐵(𝑚,𝑛)   𝑀(𝑚,𝑛)   𝑍(𝑚,𝑛)

Proof of Theorem allbutfi
StepHypRef Expression
1 allbutfi.a . . . . . 6 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
21eleq2i 2843 . . . . 5 (𝑋𝐴𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
32biimpi 219 . . . 4 (𝑋𝐴𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
4 eliun 4890 . . . 4 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
53, 4sylib 221 . . 3 (𝑋𝐴 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
6 nfcv 2919 . . . . 5 𝑛𝑋
7 nfiu1 4920 . . . . . 6 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
81, 7nfcxfr 2917 . . . . 5 𝑛𝐴
96, 8nfel 2933 . . . 4 𝑛 𝑋𝐴
10 eliin 4891 . . . . . 6 (𝑋𝐴 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1110biimpd 232 . . . . 5 (𝑋𝐴 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1211a1d 25 . . . 4 (𝑋𝐴 → (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵)))
139, 12reximdai 3235 . . 3 (𝑋𝐴 → (∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵))
145, 13mpd 15 . 2 (𝑋𝐴 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
15 simpr 488 . . . . . . 7 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵)
16 allbutfi.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
1716eleq2i 2843 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1817biimpi 219 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
19 eluzelz 12305 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
20 uzid 12310 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
2118, 19, 203syl 18 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
2221ne0d 4236 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
23 eliin2 42169 . . . . . . . . 9 ((ℤ𝑛) ≠ ∅ → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2422, 23syl 17 . . . . . . . 8 (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2524adantr 484 . . . . . . 7 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2615, 25mpbird 260 . . . . . 6 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
2726ex 416 . . . . 5 (𝑛𝑍 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋 𝑚 ∈ (ℤ𝑛)𝐵))
2827reximia 3170 . . . 4 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
2928, 4sylibr 237 . . 3 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
3029, 1eleqtrrdi 2863 . 2 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋𝐴)
3114, 30impbii 212 1 (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  c0 4227   ciun 4886   ciin 4887  cfv 6340  cz 12033  cuz 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-pre-lttri 10662
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-neg 10924  df-z 12034  df-uz 12296
This theorem is referenced by:  allbutfiinf  42468  allbutfifvre  42728  smflimlem3  43817  smfliminflem  43872
  Copyright terms: Public domain W3C validator