![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > allbutfi | Structured version Visualization version GIF version |
Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 43397 and eliuniin2 43418 (here, the precondition can be dropped; see eliuniincex 43407). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
allbutfi.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
allbutfi.a | ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 |
Ref | Expression |
---|---|
allbutfi | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | allbutfi.a | . . . . . 6 ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 | |
2 | 1 | eleq2i 2826 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
4 | eliun 4959 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) | |
5 | 3, 4 | sylib 217 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
6 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑛𝑋 | |
7 | nfiu1 4989 | . . . . . 6 ⊢ Ⅎ𝑛∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 | |
8 | 1, 7 | nfcxfr 2902 | . . . . 5 ⊢ Ⅎ𝑛𝐴 |
9 | 6, 8 | nfel 2918 | . . . 4 ⊢ Ⅎ𝑛 𝑋 ∈ 𝐴 |
10 | eliin 4960 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) | |
11 | 10 | biimpd 228 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
12 | 11 | a1d 25 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵))) |
13 | 9, 12 | reximdai 3243 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
14 | 5, 13 | mpd 15 | . 2 ⊢ (𝑋 ∈ 𝐴 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
15 | simpr 486 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) | |
16 | allbutfi.z | . . . . . . . . . . . . 13 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
17 | 16 | eleq2i 2826 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
18 | 17 | biimpi 215 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
19 | eluzelz 12778 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℤ) | |
20 | uzid 12783 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ≥‘𝑛)) | |
21 | 18, 19, 20 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑛)) |
22 | 21 | ne0d 4296 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
23 | eliin2 43414 | . . . . . . . . 9 ⊢ ((ℤ≥‘𝑛) ≠ ∅ → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
25 | 24 | adantr 482 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
26 | 15, 25 | mpbird 257 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
27 | 26 | ex 414 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵)) |
28 | 27 | reximia 3081 | . . . 4 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
29 | 28, 4 | sylibr 233 | . . 3 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
30 | 29, 1 | eleqtrrdi 2845 | . 2 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐴) |
31 | 14, 30 | impbii 208 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∅c0 4283 ∪ ciun 4955 ∩ ciin 4956 ‘cfv 6497 ℤcz 12504 ℤ≥cuz 12768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-pre-lttri 11130 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-neg 11393 df-z 12505 df-uz 12769 |
This theorem is referenced by: allbutfiinf 43741 allbutfifvre 44002 smflimlem3 45100 smfliminflem 45157 |
Copyright terms: Public domain | W3C validator |