| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > allbutfi | Structured version Visualization version GIF version | ||
| Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 45100 and eliuniin2 45121 (here, the precondition can be dropped; see eliuniincex 45110). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| allbutfi.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| allbutfi.a | ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 |
| Ref | Expression |
|---|---|
| allbutfi | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | allbutfi.a | . . . . . 6 ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 | |
| 2 | 1 | eleq2i 2821 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 4 | eliun 4962 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 6 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑛𝑋 | |
| 7 | nfiu1 4994 | . . . . . 6 ⊢ Ⅎ𝑛∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 | |
| 8 | 1, 7 | nfcxfr 2890 | . . . . 5 ⊢ Ⅎ𝑛𝐴 |
| 9 | 6, 8 | nfel 2907 | . . . 4 ⊢ Ⅎ𝑛 𝑋 ∈ 𝐴 |
| 10 | eliin 4963 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) | |
| 11 | 10 | biimpd 229 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
| 12 | 11 | a1d 25 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵))) |
| 13 | 9, 12 | reximdai 3240 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
| 14 | 5, 13 | mpd 15 | . 2 ⊢ (𝑋 ∈ 𝐴 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
| 15 | simpr 484 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) | |
| 16 | allbutfi.z | . . . . . . . . . . . . 13 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 17 | 16 | eleq2i 2821 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
| 18 | 17 | biimpi 216 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 19 | eluzelz 12810 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℤ) | |
| 20 | uzid 12815 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ≥‘𝑛)) | |
| 21 | 18, 19, 20 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑛)) |
| 22 | 21 | ne0d 4308 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
| 23 | eliin2 45117 | . . . . . . . . 9 ⊢ ((ℤ≥‘𝑛) ≠ ∅ → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) | |
| 24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
| 25 | 24 | adantr 480 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
| 26 | 15, 25 | mpbird 257 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 27 | 26 | ex 412 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵)) |
| 28 | 27 | reximia 3065 | . . . 4 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 29 | 28, 4 | sylibr 234 | . . 3 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
| 30 | 29, 1 | eleqtrrdi 2840 | . 2 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐴) |
| 31 | 14, 30 | impbii 209 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∅c0 4299 ∪ ciun 4958 ∩ ciin 4959 ‘cfv 6514 ℤcz 12536 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-z 12537 df-uz 12801 |
| This theorem is referenced by: allbutfiinf 45423 allbutfifvre 45680 smflimlem3 46778 smfliminflem 46835 |
| Copyright terms: Public domain | W3C validator |