Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfi Structured version   Visualization version   GIF version

Theorem allbutfi 45490
Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 45195 and eliuniin2 45216 (here, the precondition can be dropped; see eliuniincex 45205). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
allbutfi.z 𝑍 = (ℤ𝑀)
allbutfi.a 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
Assertion
Ref Expression
allbutfi (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
Distinct variable group:   𝑚,𝑋,𝑛
Allowed substitution hints:   𝐴(𝑚,𝑛)   𝐵(𝑚,𝑛)   𝑀(𝑚,𝑛)   𝑍(𝑚,𝑛)

Proof of Theorem allbutfi
StepHypRef Expression
1 allbutfi.a . . . . . 6 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
21eleq2i 2823 . . . . 5 (𝑋𝐴𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
32biimpi 216 . . . 4 (𝑋𝐴𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
4 eliun 4943 . . . 4 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
53, 4sylib 218 . . 3 (𝑋𝐴 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
6 nfcv 2894 . . . . 5 𝑛𝑋
7 nfiu1 4975 . . . . . 6 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
81, 7nfcxfr 2892 . . . . 5 𝑛𝐴
96, 8nfel 2909 . . . 4 𝑛 𝑋𝐴
10 eliin 4944 . . . . . 6 (𝑋𝐴 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1110biimpd 229 . . . . 5 (𝑋𝐴 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1211a1d 25 . . . 4 (𝑋𝐴 → (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵)))
139, 12reximdai 3234 . . 3 (𝑋𝐴 → (∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵))
145, 13mpd 15 . 2 (𝑋𝐴 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
15 simpr 484 . . . . . . 7 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵)
16 allbutfi.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
1716eleq2i 2823 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1817biimpi 216 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
19 eluzelz 12742 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
20 uzid 12747 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
2118, 19, 203syl 18 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
2221ne0d 4289 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
23 eliin2 45212 . . . . . . . . 9 ((ℤ𝑛) ≠ ∅ → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2422, 23syl 17 . . . . . . . 8 (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2524adantr 480 . . . . . . 7 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2615, 25mpbird 257 . . . . . 6 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
2726ex 412 . . . . 5 (𝑛𝑍 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋 𝑚 ∈ (ℤ𝑛)𝐵))
2827reximia 3067 . . . 4 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
2928, 4sylibr 234 . . 3 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
3029, 1eleqtrrdi 2842 . 2 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋𝐴)
3114, 30impbii 209 1 (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  c0 4280   ciun 4939   ciin 4940  cfv 6481  cz 12468  cuz 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-neg 11347  df-z 12469  df-uz 12733
This theorem is referenced by:  allbutfiinf  45517  allbutfifvre  45772  smflimlem3  46870  smfliminflem  46927
  Copyright terms: Public domain W3C validator