Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > allbutfi | Structured version Visualization version GIF version |
Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 42538 and eliuniin2 42558 (here, the precondition can be dropped; see eliuniincex 42548). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
allbutfi.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
allbutfi.a | ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 |
Ref | Expression |
---|---|
allbutfi | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | allbutfi.a | . . . . . 6 ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 | |
2 | 1 | eleq2i 2830 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
4 | eliun 4925 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) | |
5 | 3, 4 | sylib 217 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
6 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑛𝑋 | |
7 | nfiu1 4955 | . . . . . 6 ⊢ Ⅎ𝑛∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 | |
8 | 1, 7 | nfcxfr 2904 | . . . . 5 ⊢ Ⅎ𝑛𝐴 |
9 | 6, 8 | nfel 2920 | . . . 4 ⊢ Ⅎ𝑛 𝑋 ∈ 𝐴 |
10 | eliin 4926 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) | |
11 | 10 | biimpd 228 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
12 | 11 | a1d 25 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵))) |
13 | 9, 12 | reximdai 3239 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
14 | 5, 13 | mpd 15 | . 2 ⊢ (𝑋 ∈ 𝐴 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
15 | simpr 484 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) | |
16 | allbutfi.z | . . . . . . . . . . . . 13 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
17 | 16 | eleq2i 2830 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
18 | 17 | biimpi 215 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
19 | eluzelz 12521 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) → 𝑛 ∈ ℤ) | |
20 | uzid 12526 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ≥‘𝑛)) | |
21 | 18, 19, 20 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑛)) |
22 | 21 | ne0d 4266 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
23 | eliin2 42554 | . . . . . . . . 9 ⊢ ((ℤ≥‘𝑛) ≠ ∅ → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
25 | 24 | adantr 480 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵)) |
26 | 15, 25 | mpbird 256 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
27 | 26 | ex 412 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵)) |
28 | 27 | reximia 3172 | . . . 4 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
29 | 28, 4 | sylibr 233 | . . 3 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵) |
30 | 29, 1 | eleqtrrdi 2850 | . 2 ⊢ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐴) |
31 | 14, 30 | impbii 208 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∅c0 4253 ∪ ciun 4921 ∩ ciin 4922 ‘cfv 6418 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: allbutfiinf 42850 allbutfifvre 43106 smflimlem3 44195 smfliminflem 44250 |
Copyright terms: Public domain | W3C validator |