Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfi Structured version   Visualization version   GIF version

Theorem allbutfi 45404
Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 45104 and eliuniin2 45125 (here, the precondition can be dropped; see eliuniincex 45114). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
allbutfi.z 𝑍 = (ℤ𝑀)
allbutfi.a 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
Assertion
Ref Expression
allbutfi (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
Distinct variable group:   𝑚,𝑋,𝑛
Allowed substitution hints:   𝐴(𝑚,𝑛)   𝐵(𝑚,𝑛)   𝑀(𝑚,𝑛)   𝑍(𝑚,𝑛)

Proof of Theorem allbutfi
StepHypRef Expression
1 allbutfi.a . . . . . 6 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
21eleq2i 2833 . . . . 5 (𝑋𝐴𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
32biimpi 216 . . . 4 (𝑋𝐴𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
4 eliun 4995 . . . 4 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
53, 4sylib 218 . . 3 (𝑋𝐴 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
6 nfcv 2905 . . . . 5 𝑛𝑋
7 nfiu1 5027 . . . . . 6 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
81, 7nfcxfr 2903 . . . . 5 𝑛𝐴
96, 8nfel 2920 . . . 4 𝑛 𝑋𝐴
10 eliin 4996 . . . . . 6 (𝑋𝐴 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1110biimpd 229 . . . . 5 (𝑋𝐴 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1211a1d 25 . . . 4 (𝑋𝐴 → (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵)))
139, 12reximdai 3261 . . 3 (𝑋𝐴 → (∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵))
145, 13mpd 15 . 2 (𝑋𝐴 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
15 simpr 484 . . . . . . 7 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵)
16 allbutfi.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
1716eleq2i 2833 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1817biimpi 216 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
19 eluzelz 12888 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
20 uzid 12893 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
2118, 19, 203syl 18 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
2221ne0d 4342 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
23 eliin2 45121 . . . . . . . . 9 ((ℤ𝑛) ≠ ∅ → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2422, 23syl 17 . . . . . . . 8 (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2524adantr 480 . . . . . . 7 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2615, 25mpbird 257 . . . . . 6 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
2726ex 412 . . . . 5 (𝑛𝑍 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋 𝑚 ∈ (ℤ𝑛)𝐵))
2827reximia 3081 . . . 4 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
2928, 4sylibr 234 . . 3 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
3029, 1eleqtrrdi 2852 . 2 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋𝐴)
3114, 30impbii 209 1 (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  c0 4333   ciun 4991   ciin 4992  cfv 6561  cz 12613  cuz 12878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-neg 11495  df-z 12614  df-uz 12879
This theorem is referenced by:  allbutfiinf  45431  allbutfifvre  45690  smflimlem3  46788  smfliminflem  46845
  Copyright terms: Public domain W3C validator