Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfi Structured version   Visualization version   GIF version

Theorem allbutfi 44089
Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 43773 and eliuniin2 43794 (here, the precondition can be dropped; see eliuniincex 43783). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
allbutfi.z 𝑍 = (ℤ𝑀)
allbutfi.a 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
Assertion
Ref Expression
allbutfi (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
Distinct variable group:   𝑚,𝑋,𝑛
Allowed substitution hints:   𝐴(𝑚,𝑛)   𝐵(𝑚,𝑛)   𝑀(𝑚,𝑛)   𝑍(𝑚,𝑛)

Proof of Theorem allbutfi
StepHypRef Expression
1 allbutfi.a . . . . . 6 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
21eleq2i 2825 . . . . 5 (𝑋𝐴𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
32biimpi 215 . . . 4 (𝑋𝐴𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
4 eliun 5000 . . . 4 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
53, 4sylib 217 . . 3 (𝑋𝐴 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
6 nfcv 2903 . . . . 5 𝑛𝑋
7 nfiu1 5030 . . . . . 6 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
81, 7nfcxfr 2901 . . . . 5 𝑛𝐴
96, 8nfel 2917 . . . 4 𝑛 𝑋𝐴
10 eliin 5001 . . . . . 6 (𝑋𝐴 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1110biimpd 228 . . . . 5 (𝑋𝐴 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1211a1d 25 . . . 4 (𝑋𝐴 → (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵)))
139, 12reximdai 3258 . . 3 (𝑋𝐴 → (∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵))
145, 13mpd 15 . 2 (𝑋𝐴 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
15 simpr 485 . . . . . . 7 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵)
16 allbutfi.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
1716eleq2i 2825 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
1817biimpi 215 . . . . . . . . . . 11 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
19 eluzelz 12828 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
20 uzid 12833 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
2118, 19, 203syl 18 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
2221ne0d 4334 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
23 eliin2 43790 . . . . . . . . 9 ((ℤ𝑛) ≠ ∅ → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2422, 23syl 17 . . . . . . . 8 (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2524adantr 481 . . . . . . 7 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → (𝑋 𝑚 ∈ (ℤ𝑛)𝐵 ↔ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
2615, 25mpbird 256 . . . . . 6 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
2726ex 413 . . . . 5 (𝑛𝑍 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋 𝑚 ∈ (ℤ𝑛)𝐵))
2827reximia 3081 . . . 4 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)𝐵)
2928, 4sylibr 233 . . 3 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵)
3029, 1eleqtrrdi 2844 . 2 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵𝑋𝐴)
3114, 30impbii 208 1 (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  c0 4321   ciun 4996   ciin 4997  cfv 6540  cz 12554  cuz 12818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-neg 11443  df-z 12555  df-uz 12819
This theorem is referenced by:  allbutfiinf  44116  allbutfifvre  44377  smflimlem3  45475  smfliminflem  45532
  Copyright terms: Public domain W3C validator