MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimdelov Structured version   Visualization version   GIF version

Theorem elimdelov 7349
Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.)
Hypotheses
Ref Expression
elimdelov.1 (𝜑𝐶 ∈ (𝐴𝐹𝐵))
elimdelov.2 𝑍 ∈ (𝑋𝐹𝑌)
Assertion
Ref Expression
elimdelov if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))

Proof of Theorem elimdelov
StepHypRef Expression
1 elimdelov.1 . . 3 (𝜑𝐶 ∈ (𝐴𝐹𝐵))
2 iftrue 4462 . . 3 (𝜑 → if(𝜑, 𝐶, 𝑍) = 𝐶)
3 iftrue 4462 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝑋) = 𝐴)
4 iftrue 4462 . . . 4 (𝜑 → if(𝜑, 𝐵, 𝑌) = 𝐵)
53, 4oveq12d 7273 . . 3 (𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝐴𝐹𝐵))
61, 2, 53eltr4d 2854 . 2 (𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)))
7 iffalse 4465 . . . 4 𝜑 → if(𝜑, 𝐶, 𝑍) = 𝑍)
8 elimdelov.2 . . . 4 𝑍 ∈ (𝑋𝐹𝑌)
97, 8eqeltrdi 2847 . . 3 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (𝑋𝐹𝑌))
10 iffalse 4465 . . . 4 𝜑 → if(𝜑, 𝐴, 𝑋) = 𝑋)
11 iffalse 4465 . . . 4 𝜑 → if(𝜑, 𝐵, 𝑌) = 𝑌)
1210, 11oveq12d 7273 . . 3 𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝑋𝐹𝑌))
139, 12eleqtrrd 2842 . 2 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)))
146, 13pm2.61i 182 1 if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  ifcif 4456  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator