MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimdelov Structured version   Visualization version   GIF version

Theorem elimdelov 7498
Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.)
Hypotheses
Ref Expression
elimdelov.1 (𝜑𝐶 ∈ (𝐴𝐹𝐵))
elimdelov.2 𝑍 ∈ (𝑋𝐹𝑌)
Assertion
Ref Expression
elimdelov if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))

Proof of Theorem elimdelov
StepHypRef Expression
1 elimdelov.1 . . 3 (𝜑𝐶 ∈ (𝐴𝐹𝐵))
2 iftrue 4527 . . 3 (𝜑 → if(𝜑, 𝐶, 𝑍) = 𝐶)
3 iftrue 4527 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝑋) = 𝐴)
4 iftrue 4527 . . . 4 (𝜑 → if(𝜑, 𝐵, 𝑌) = 𝐵)
53, 4oveq12d 7420 . . 3 (𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝐴𝐹𝐵))
61, 2, 53eltr4d 2840 . 2 (𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)))
7 iffalse 4530 . . . 4 𝜑 → if(𝜑, 𝐶, 𝑍) = 𝑍)
8 elimdelov.2 . . . 4 𝑍 ∈ (𝑋𝐹𝑌)
97, 8eqeltrdi 2833 . . 3 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (𝑋𝐹𝑌))
10 iffalse 4530 . . . 4 𝜑 → if(𝜑, 𝐴, 𝑋) = 𝑋)
11 iffalse 4530 . . . 4 𝜑 → if(𝜑, 𝐵, 𝑌) = 𝑌)
1210, 11oveq12d 7420 . . 3 𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝑋𝐹𝑌))
139, 12eleqtrrd 2828 . 2 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)))
146, 13pm2.61i 182 1 if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2098  ifcif 4521  (class class class)co 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-iota 6486  df-fv 6542  df-ov 7405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator