| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimdelov | Structured version Visualization version GIF version | ||
| Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.) |
| Ref | Expression |
|---|---|
| elimdelov.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) |
| elimdelov.2 | ⊢ 𝑍 ∈ (𝑋𝐹𝑌) |
| Ref | Expression |
|---|---|
| elimdelov | ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimdelov.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) | |
| 2 | iftrue 4511 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐶, 𝑍) = 𝐶) | |
| 3 | iftrue 4511 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝑋) = 𝐴) | |
| 4 | iftrue 4511 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐵, 𝑌) = 𝐵) | |
| 5 | 3, 4 | oveq12d 7428 | . . 3 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝐴𝐹𝐵)) |
| 6 | 1, 2, 5 | 3eltr4d 2850 | . 2 ⊢ (𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))) |
| 7 | iffalse 4514 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) = 𝑍) | |
| 8 | elimdelov.2 | . . . 4 ⊢ 𝑍 ∈ (𝑋𝐹𝑌) | |
| 9 | 7, 8 | eqeltrdi 2843 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (𝑋𝐹𝑌)) |
| 10 | iffalse 4514 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝑋) = 𝑋) | |
| 11 | iffalse 4514 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝑌) = 𝑌) | |
| 12 | 10, 11 | oveq12d 7428 | . . 3 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝑋𝐹𝑌)) |
| 13 | 9, 12 | eleqtrrd 2838 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))) |
| 14 | 6, 13 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ifcif 4505 (class class class)co 7410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |