Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimdelov | Structured version Visualization version GIF version |
Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.) |
Ref | Expression |
---|---|
elimdelov.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) |
elimdelov.2 | ⊢ 𝑍 ∈ (𝑋𝐹𝑌) |
Ref | Expression |
---|---|
elimdelov | ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimdelov.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) | |
2 | iftrue 4462 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐶, 𝑍) = 𝐶) | |
3 | iftrue 4462 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝑋) = 𝐴) | |
4 | iftrue 4462 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐵, 𝑌) = 𝐵) | |
5 | 3, 4 | oveq12d 7273 | . . 3 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝐴𝐹𝐵)) |
6 | 1, 2, 5 | 3eltr4d 2854 | . 2 ⊢ (𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))) |
7 | iffalse 4465 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) = 𝑍) | |
8 | elimdelov.2 | . . . 4 ⊢ 𝑍 ∈ (𝑋𝐹𝑌) | |
9 | 7, 8 | eqeltrdi 2847 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (𝑋𝐹𝑌)) |
10 | iffalse 4465 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝑋) = 𝑋) | |
11 | iffalse 4465 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝑌) = 𝑌) | |
12 | 10, 11 | oveq12d 7273 | . . 3 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝑋𝐹𝑌)) |
13 | 9, 12 | eleqtrrd 2842 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))) |
14 | 6, 13 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ifcif 4456 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |