![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimdelov | Structured version Visualization version GIF version |
Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.) |
Ref | Expression |
---|---|
elimdelov.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) |
elimdelov.2 | ⊢ 𝑍 ∈ (𝑋𝐹𝑌) |
Ref | Expression |
---|---|
elimdelov | ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimdelov.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) | |
2 | iftrue 4527 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐶, 𝑍) = 𝐶) | |
3 | iftrue 4527 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝑋) = 𝐴) | |
4 | iftrue 4527 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐵, 𝑌) = 𝐵) | |
5 | 3, 4 | oveq12d 7420 | . . 3 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝐴𝐹𝐵)) |
6 | 1, 2, 5 | 3eltr4d 2840 | . 2 ⊢ (𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))) |
7 | iffalse 4530 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) = 𝑍) | |
8 | elimdelov.2 | . . . 4 ⊢ 𝑍 ∈ (𝑋𝐹𝑌) | |
9 | 7, 8 | eqeltrdi 2833 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (𝑋𝐹𝑌)) |
10 | iffalse 4530 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝑋) = 𝑋) | |
11 | iffalse 4530 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝑌) = 𝑌) | |
12 | 10, 11 | oveq12d 7420 | . . 3 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝑋𝐹𝑌)) |
13 | 9, 12 | eleqtrrd 2828 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))) |
14 | 6, 13 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 ifcif 4521 (class class class)co 7402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-iota 6486 df-fv 6542 df-ov 7405 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |