Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimdelov | Structured version Visualization version GIF version |
Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.) |
Ref | Expression |
---|---|
elimdelov.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) |
elimdelov.2 | ⊢ 𝑍 ∈ (𝑋𝐹𝑌) |
Ref | Expression |
---|---|
elimdelov | ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimdelov.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) | |
2 | iftrue 4465 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐶, 𝑍) = 𝐶) | |
3 | iftrue 4465 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝑋) = 𝐴) | |
4 | iftrue 4465 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐵, 𝑌) = 𝐵) | |
5 | 3, 4 | oveq12d 7293 | . . 3 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝐴𝐹𝐵)) |
6 | 1, 2, 5 | 3eltr4d 2854 | . 2 ⊢ (𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))) |
7 | iffalse 4468 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) = 𝑍) | |
8 | elimdelov.2 | . . . 4 ⊢ 𝑍 ∈ (𝑋𝐹𝑌) | |
9 | 7, 8 | eqeltrdi 2847 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (𝑋𝐹𝑌)) |
10 | iffalse 4468 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝑋) = 𝑋) | |
11 | iffalse 4468 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝑌) = 𝑌) | |
12 | 10, 11 | oveq12d 7293 | . . 3 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝑋𝐹𝑌)) |
13 | 9, 12 | eleqtrrd 2842 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))) |
14 | 6, 13 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ifcif 4459 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |