![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5067, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2951 | . 2 ⊢ Ⅎ𝑧𝐶 | |
2 | nfcv 2951 | . 2 ⊢ Ⅎ𝑤𝐶 | |
3 | nfcv 2951 | . 2 ⊢ Ⅎ𝑥𝐷 | |
4 | nfcv 2951 | . 2 ⊢ Ⅎ𝑦𝐷 | |
5 | cbvmpov.1 | . . 3 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
6 | cbvmpov.2 | . . 3 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
7 | 5, 6 | sylan9eq 2853 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
8 | 1, 2, 3, 4, 7 | cbvmpo 7111 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ cmpo 7025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-opab 5031 df-oprab 7027 df-mpo 7028 |
This theorem is referenced by: seqomlem0 7943 dffi3 8748 cantnfsuc 8986 fin23lem33 9620 om2uzrdg 13178 uzrdgsuci 13182 sadcp1 15641 smupp1 15666 imasvscafn 16643 mgmnsgrpex 17861 sgrpnmndex 17862 sylow1 18462 sylow2b 18482 sylow3lem5 18490 sylow3 18492 efgmval 18569 efgtf 18579 frlmphl 20611 pmatcollpw3lem 21079 mp2pm2mplem3 21104 txbas 21863 bcth 23619 opnmbl 23890 mbfimaopn 23944 mbfi1fseq 24009 motplusg 26014 ttgval 26348 opsqrlem3 29606 fedgmul 30627 mdetpmtr12 30701 madjusmdetlem4 30706 fvproj 30709 dya2iocival 31144 sxbrsigalem5 31159 sxbrsigalem6 31160 eulerpart 31253 sseqp1 31266 cvmliftlem15 32155 cvmlift2 32173 opnmbllem0 34480 mblfinlem1 34481 mblfinlem2 34482 sdc 34572 tendoplcbv 37463 dvhvaddcbv 37777 dvhvscacbv 37786 fsovcnvlem 39865 ntrneibex 39929 ioorrnopn 42154 hoidmvle 42446 ovnhoi 42449 hoimbl 42477 smflimlem6 42616 funcrngcsetc 43769 funcrngcsetcALT 43770 funcringcsetc 43806 lmod1zr 44050 |
Copyright terms: Public domain | W3C validator |