Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5192, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2905 | . 2 ⊢ Ⅎ𝑧𝐶 | |
2 | nfcv 2905 | . 2 ⊢ Ⅎ𝑤𝐶 | |
3 | nfcv 2905 | . 2 ⊢ Ⅎ𝑥𝐷 | |
4 | nfcv 2905 | . 2 ⊢ Ⅎ𝑦𝐷 | |
5 | cbvmpov.1 | . . 3 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
6 | cbvmpov.2 | . . 3 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
7 | 5, 6 | sylan9eq 2796 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
8 | 1, 2, 3, 4, 7 | cbvmpo 7401 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ cmpo 7309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-opab 5144 df-oprab 7311 df-mpo 7312 |
This theorem is referenced by: fvproj 8006 seqomlem0 8311 dffi3 9234 cantnfsuc 9472 fin23lem33 10147 om2uzrdg 13722 uzrdgsuci 13726 sadcp1 16207 smupp1 16232 imasvscafn 17293 mgmnsgrpex 18615 sgrpnmndex 18616 sylow1 19253 sylow2b 19273 sylow3lem5 19281 sylow3 19283 efgmval 19363 efgtf 19373 frlmphl 21033 pmatcollpw3lem 21977 mp2pm2mplem3 22002 txbas 22763 bcth 24538 opnmbl 24811 mbfimaopn 24865 mbfi1fseq 24931 motplusg 26948 ttgval 27281 ttgvalOLD 27282 opsqrlem3 30549 fedgmul 31757 mdetpmtr12 31820 madjusmdetlem4 31825 dya2iocival 32285 sxbrsigalem5 32300 sxbrsigalem6 32301 eulerpart 32394 sseqp1 32407 cvmliftlem15 33305 cvmlift2 33323 opnmbllem0 35857 mblfinlem1 35858 mblfinlem2 35859 sdc 35946 tendoplcbv 38831 dvhvaddcbv 39145 dvhvscacbv 39154 fsovcnvlem 41659 ntrneibex 41721 ioorrnopn 43895 hoidmvle 44188 ovnhoi 44191 hoimbl 44219 smflimlem6 44364 funcrngcsetc 45614 funcrngcsetcALT 45615 funcringcsetc 45651 lmod1zr 45892 functhinclem4 46383 |
Copyright terms: Public domain | W3C validator |