MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpov Structured version   Visualization version   GIF version

Theorem cbvmpov 7545
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5277, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpov.1 (𝑥 = 𝑧𝐶 = 𝐸)
cbvmpov.2 (𝑦 = 𝑤𝐸 = 𝐷)
Assertion
Ref Expression
cbvmpov (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑧   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpov
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2827 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1w 2827 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
31, 2bi2anan9 637 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝐵)))
4 cbvmpov.1 . . . . . 6 (𝑥 = 𝑧𝐶 = 𝐸)
5 cbvmpov.2 . . . . . 6 (𝑦 = 𝑤𝐸 = 𝐷)
64, 5sylan9eq 2800 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
76eqeq2d 2751 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = 𝐶𝑣 = 𝐷))
83, 7anbi12d 631 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)))
98cbvoprab12v 7540 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)}
10 df-mpo 7453 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)}
11 df-mpo 7453 . 2 (𝑧𝐴, 𝑤𝐵𝐷) = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)}
129, 10, 113eqtr4i 2778 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {coprab 7449  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  fvproj  8175  seqomlem0  8505  dffi3  9500  cantnfsuc  9739  fin23lem33  10414  om2uzrdg  14007  uzrdgsuci  14011  sadcp1  16501  smupp1  16526  imasvscafn  17597  mgmnsgrpex  18966  sgrpnmndex  18967  sylow1  19645  sylow2b  19665  sylow3lem5  19673  sylow3  19675  efgmval  19754  efgtf  19764  funcrngcsetc  20662  funcrngcsetcALT  20663  funcringcsetc  20696  frlmphl  21824  pmatcollpw3lem  22810  mp2pm2mplem3  22835  txbas  23596  mpomulcn  24910  bcth  25382  opnmbl  25656  mbfimaopn  25710  mbfi1fseq  25776  om2noseqrdg  28328  noseqrdgsuc  28332  motplusg  28568  ttgval  28901  ttgvalOLD  28902  opsqrlem3  32174  fedgmul  33644  mdetpmtr12  33771  madjusmdetlem4  33776  dya2iocival  34238  sxbrsigalem5  34253  sxbrsigalem6  34254  eulerpart  34347  sseqp1  34360  cvmliftlem15  35266  cvmlift2  35284  opnmbllem0  37616  mblfinlem1  37617  mblfinlem2  37618  sdc  37704  tendoplcbv  40732  dvhvaddcbv  41046  dvhvscacbv  41055  fsovcnvlem  43975  ntrneibex  44035  ioorrnopn  46226  hoidmvle  46521  ovnhoi  46524  hoimbl  46552  smflimlem6  46697  lmod1zr  48222  functhinclem4  48711
  Copyright terms: Public domain W3C validator