![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5277, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2827 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
2 | eleq1w 2827 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) | |
3 | 1, 2 | bi2anan9 637 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) |
4 | cbvmpov.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
5 | cbvmpov.2 | . . . . . 6 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
6 | 4, 5 | sylan9eq 2800 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
7 | 6 | eqeq2d 2751 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = 𝐶 ↔ 𝑣 = 𝐷)) |
8 | 3, 7 | anbi12d 631 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷))) |
9 | 8 | cbvoprab12v 7540 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} |
10 | df-mpo 7453 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} | |
11 | df-mpo 7453 | . 2 ⊢ (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} | |
12 | 9, 10, 11 | 3eqtr4i 2778 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {coprab 7449 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: fvproj 8175 seqomlem0 8505 dffi3 9500 cantnfsuc 9739 fin23lem33 10414 om2uzrdg 14007 uzrdgsuci 14011 sadcp1 16501 smupp1 16526 imasvscafn 17597 mgmnsgrpex 18966 sgrpnmndex 18967 sylow1 19645 sylow2b 19665 sylow3lem5 19673 sylow3 19675 efgmval 19754 efgtf 19764 funcrngcsetc 20662 funcrngcsetcALT 20663 funcringcsetc 20696 frlmphl 21824 pmatcollpw3lem 22810 mp2pm2mplem3 22835 txbas 23596 mpomulcn 24910 bcth 25382 opnmbl 25656 mbfimaopn 25710 mbfi1fseq 25776 om2noseqrdg 28328 noseqrdgsuc 28332 motplusg 28568 ttgval 28901 ttgvalOLD 28902 opsqrlem3 32174 fedgmul 33644 mdetpmtr12 33771 madjusmdetlem4 33776 dya2iocival 34238 sxbrsigalem5 34253 sxbrsigalem6 34254 eulerpart 34347 sseqp1 34360 cvmliftlem15 35266 cvmlift2 35284 opnmbllem0 37616 mblfinlem1 37617 mblfinlem2 37618 sdc 37704 tendoplcbv 40732 dvhvaddcbv 41046 dvhvscacbv 41055 fsovcnvlem 43975 ntrneibex 44035 ioorrnopn 46226 hoidmvle 46521 ovnhoi 46524 hoimbl 46552 smflimlem6 46697 lmod1zr 48222 functhinclem4 48711 |
Copyright terms: Public domain | W3C validator |