| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5193, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
| cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2814 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | eleq1w 2814 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) |
| 4 | cbvmpov.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
| 5 | cbvmpov.2 | . . . . . 6 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
| 6 | 4, 5 | sylan9eq 2786 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| 7 | 6 | eqeq2d 2742 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = 𝐶 ↔ 𝑣 = 𝐷)) |
| 8 | 3, 7 | anbi12d 632 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷))) |
| 9 | 8 | cbvoprab12v 7436 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} |
| 10 | df-mpo 7351 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} | |
| 11 | df-mpo 7351 | . 2 ⊢ (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} | |
| 12 | 9, 10, 11 | 3eqtr4i 2764 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {coprab 7347 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: fvproj 8064 seqomlem0 8368 dffi3 9315 cantnfsuc 9560 fin23lem33 10233 om2uzrdg 13860 uzrdgsuci 13864 sadcp1 16363 smupp1 16388 imasvscafn 17438 mgmnsgrpex 18836 sgrpnmndex 18837 sylow1 19513 sylow2b 19533 sylow3lem5 19541 sylow3 19543 efgmval 19622 efgtf 19632 funcrngcsetc 20553 funcrngcsetcALT 20554 funcringcsetc 20587 frlmphl 21716 pmatcollpw3lem 22696 mp2pm2mplem3 22721 txbas 23480 mpomulcn 24783 bcth 25254 opnmbl 25528 mbfimaopn 25582 mbfi1fseq 25647 om2noseqrdg 28232 noseqrdgsuc 28236 motplusg 28518 ttgval 28851 opsqrlem3 32117 elrgspnlem2 33205 splysubrg 33578 issply 33579 fedgmul 33639 mdetpmtr12 33833 madjusmdetlem4 33838 dya2iocival 34281 sxbrsigalem5 34296 sxbrsigalem6 34297 eulerpart 34390 sseqp1 34403 cvmliftlem15 35330 cvmlift2 35348 opnmbllem0 37695 mblfinlem1 37696 mblfinlem2 37697 sdc 37783 tendoplcbv 40813 dvhvaddcbv 41127 dvhvscacbv 41136 fsovcnvlem 44045 ntrneibex 44105 ioorrnopn 46342 hoidmvle 46637 ovnhoi 46640 hoimbl 46668 smflimlem6 46813 lmod1zr 48524 functhinclem4 49478 |
| Copyright terms: Public domain | W3C validator |