| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5212, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
| cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2812 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | eleq1w 2812 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) |
| 4 | cbvmpov.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
| 5 | cbvmpov.2 | . . . . . 6 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
| 6 | 4, 5 | sylan9eq 2785 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| 7 | 6 | eqeq2d 2741 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = 𝐶 ↔ 𝑣 = 𝐷)) |
| 8 | 3, 7 | anbi12d 632 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷))) |
| 9 | 8 | cbvoprab12v 7482 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} |
| 10 | df-mpo 7395 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} | |
| 11 | df-mpo 7395 | . 2 ⊢ (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} | |
| 12 | 9, 10, 11 | 3eqtr4i 2763 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {coprab 7391 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: fvproj 8116 seqomlem0 8420 dffi3 9389 cantnfsuc 9630 fin23lem33 10305 om2uzrdg 13928 uzrdgsuci 13932 sadcp1 16432 smupp1 16457 imasvscafn 17507 mgmnsgrpex 18865 sgrpnmndex 18866 sylow1 19540 sylow2b 19560 sylow3lem5 19568 sylow3 19570 efgmval 19649 efgtf 19659 funcrngcsetc 20556 funcrngcsetcALT 20557 funcringcsetc 20590 frlmphl 21697 pmatcollpw3lem 22677 mp2pm2mplem3 22702 txbas 23461 mpomulcn 24765 bcth 25236 opnmbl 25510 mbfimaopn 25564 mbfi1fseq 25629 om2noseqrdg 28205 noseqrdgsuc 28209 motplusg 28476 ttgval 28809 opsqrlem3 32078 elrgspnlem2 33201 fedgmul 33634 mdetpmtr12 33822 madjusmdetlem4 33827 dya2iocival 34271 sxbrsigalem5 34286 sxbrsigalem6 34287 eulerpart 34380 sseqp1 34393 cvmliftlem15 35292 cvmlift2 35310 opnmbllem0 37657 mblfinlem1 37658 mblfinlem2 37659 sdc 37745 tendoplcbv 40776 dvhvaddcbv 41090 dvhvscacbv 41099 fsovcnvlem 44009 ntrneibex 44069 ioorrnopn 46310 hoidmvle 46605 ovnhoi 46608 hoimbl 46636 smflimlem6 46781 lmod1zr 48486 functhinclem4 49440 |
| Copyright terms: Public domain | W3C validator |