![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5260, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑧𝐶 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑤𝐶 | |
3 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐷 | |
4 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐷 | |
5 | cbvmpov.1 | . . 3 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
6 | cbvmpov.2 | . . 3 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
7 | 5, 6 | sylan9eq 2793 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
8 | 1, 2, 3, 4, 7 | cbvmpo 7503 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ cmpo 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-oprab 7413 df-mpo 7414 |
This theorem is referenced by: fvproj 8120 seqomlem0 8449 dffi3 9426 cantnfsuc 9665 fin23lem33 10340 om2uzrdg 13921 uzrdgsuci 13925 sadcp1 16396 smupp1 16421 imasvscafn 17483 mgmnsgrpex 18812 sgrpnmndex 18813 sylow1 19471 sylow2b 19491 sylow3lem5 19499 sylow3 19501 efgmval 19580 efgtf 19590 frlmphl 21336 pmatcollpw3lem 22285 mp2pm2mplem3 22310 txbas 23071 bcth 24846 opnmbl 25119 mbfimaopn 25173 mbfi1fseq 25239 motplusg 27793 ttgval 28126 ttgvalOLD 28127 opsqrlem3 31395 fedgmul 32716 mdetpmtr12 32805 madjusmdetlem4 32810 dya2iocival 33272 sxbrsigalem5 33287 sxbrsigalem6 33288 eulerpart 33381 sseqp1 33394 cvmliftlem15 34289 cvmlift2 34307 mpomulcn 35162 opnmbllem0 36524 mblfinlem1 36525 mblfinlem2 36526 sdc 36612 tendoplcbv 39646 dvhvaddcbv 39960 dvhvscacbv 39969 fsovcnvlem 42764 ntrneibex 42824 ioorrnopn 45021 hoidmvle 45316 ovnhoi 45319 hoimbl 45347 smflimlem6 45492 funcrngcsetc 46896 funcrngcsetcALT 46897 funcringcsetc 46933 lmod1zr 47174 functhinclem4 47664 |
Copyright terms: Public domain | W3C validator |