| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5223, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
| cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2817 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | eleq1w 2817 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) |
| 4 | cbvmpov.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
| 5 | cbvmpov.2 | . . . . . 6 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
| 6 | 4, 5 | sylan9eq 2790 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| 7 | 6 | eqeq2d 2746 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = 𝐶 ↔ 𝑣 = 𝐷)) |
| 8 | 3, 7 | anbi12d 632 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷))) |
| 9 | 8 | cbvoprab12v 7497 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} |
| 10 | df-mpo 7410 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} | |
| 11 | df-mpo 7410 | . 2 ⊢ (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} | |
| 12 | 9, 10, 11 | 3eqtr4i 2768 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {coprab 7406 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-oprab 7409 df-mpo 7410 |
| This theorem is referenced by: fvproj 8133 seqomlem0 8463 dffi3 9443 cantnfsuc 9684 fin23lem33 10359 om2uzrdg 13974 uzrdgsuci 13978 sadcp1 16474 smupp1 16499 imasvscafn 17551 mgmnsgrpex 18909 sgrpnmndex 18910 sylow1 19584 sylow2b 19604 sylow3lem5 19612 sylow3 19614 efgmval 19693 efgtf 19703 funcrngcsetc 20600 funcrngcsetcALT 20601 funcringcsetc 20634 frlmphl 21741 pmatcollpw3lem 22721 mp2pm2mplem3 22746 txbas 23505 mpomulcn 24809 bcth 25281 opnmbl 25555 mbfimaopn 25609 mbfi1fseq 25674 om2noseqrdg 28250 noseqrdgsuc 28254 motplusg 28521 ttgval 28854 opsqrlem3 32123 elrgspnlem2 33238 fedgmul 33671 mdetpmtr12 33856 madjusmdetlem4 33861 dya2iocival 34305 sxbrsigalem5 34320 sxbrsigalem6 34321 eulerpart 34414 sseqp1 34427 cvmliftlem15 35320 cvmlift2 35338 opnmbllem0 37680 mblfinlem1 37681 mblfinlem2 37682 sdc 37768 tendoplcbv 40794 dvhvaddcbv 41108 dvhvscacbv 41117 fsovcnvlem 44037 ntrneibex 44097 ioorrnopn 46334 hoidmvle 46629 ovnhoi 46632 hoimbl 46660 smflimlem6 46805 lmod1zr 48469 functhinclem4 49333 |
| Copyright terms: Public domain | W3C validator |