MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpov Structured version   Visualization version   GIF version

Theorem cbvmpov 7441
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5193, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpov.1 (𝑥 = 𝑧𝐶 = 𝐸)
cbvmpov.2 (𝑦 = 𝑤𝐸 = 𝐷)
Assertion
Ref Expression
cbvmpov (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑧   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpov
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2814 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1w 2814 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
31, 2bi2anan9 638 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝐵)))
4 cbvmpov.1 . . . . . 6 (𝑥 = 𝑧𝐶 = 𝐸)
5 cbvmpov.2 . . . . . 6 (𝑦 = 𝑤𝐸 = 𝐷)
64, 5sylan9eq 2786 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
76eqeq2d 2742 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = 𝐶𝑣 = 𝐷))
83, 7anbi12d 632 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)))
98cbvoprab12v 7436 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)}
10 df-mpo 7351 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)}
11 df-mpo 7351 . 2 (𝑧𝐴, 𝑤𝐵𝐷) = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)}
129, 10, 113eqtr4i 2764 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {coprab 7347  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  fvproj  8064  seqomlem0  8368  dffi3  9315  cantnfsuc  9560  fin23lem33  10233  om2uzrdg  13860  uzrdgsuci  13864  sadcp1  16363  smupp1  16388  imasvscafn  17438  mgmnsgrpex  18836  sgrpnmndex  18837  sylow1  19513  sylow2b  19533  sylow3lem5  19541  sylow3  19543  efgmval  19622  efgtf  19632  funcrngcsetc  20553  funcrngcsetcALT  20554  funcringcsetc  20587  frlmphl  21716  pmatcollpw3lem  22696  mp2pm2mplem3  22721  txbas  23480  mpomulcn  24783  bcth  25254  opnmbl  25528  mbfimaopn  25582  mbfi1fseq  25647  om2noseqrdg  28232  noseqrdgsuc  28236  motplusg  28518  ttgval  28851  opsqrlem3  32117  elrgspnlem2  33205  splysubrg  33578  issply  33579  fedgmul  33639  mdetpmtr12  33833  madjusmdetlem4  33838  dya2iocival  34281  sxbrsigalem5  34296  sxbrsigalem6  34297  eulerpart  34390  sseqp1  34403  cvmliftlem15  35330  cvmlift2  35348  opnmbllem0  37695  mblfinlem1  37696  mblfinlem2  37697  sdc  37783  tendoplcbv  40813  dvhvaddcbv  41127  dvhvscacbv  41136  fsovcnvlem  44045  ntrneibex  44105  ioorrnopn  46342  hoidmvle  46637  ovnhoi  46640  hoimbl  46668  smflimlem6  46813  lmod1zr  48524  functhinclem4  49478
  Copyright terms: Public domain W3C validator