Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5189, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑧𝐶 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑤𝐶 | |
3 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐷 | |
4 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐷 | |
5 | cbvmpov.1 | . . 3 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
6 | cbvmpov.2 | . . 3 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
7 | 5, 6 | sylan9eq 2799 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
8 | 1, 2, 3, 4, 7 | cbvmpo 7360 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ cmpo 7270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-opab 5141 df-oprab 7272 df-mpo 7273 |
This theorem is referenced by: fvproj 7959 seqomlem0 8264 dffi3 9151 cantnfsuc 9389 fin23lem33 10085 om2uzrdg 13657 uzrdgsuci 13661 sadcp1 16143 smupp1 16168 imasvscafn 17229 mgmnsgrpex 18551 sgrpnmndex 18552 sylow1 19189 sylow2b 19209 sylow3lem5 19217 sylow3 19219 efgmval 19299 efgtf 19309 frlmphl 20969 pmatcollpw3lem 21913 mp2pm2mplem3 21938 txbas 22699 bcth 24474 opnmbl 24747 mbfimaopn 24801 mbfi1fseq 24867 motplusg 26884 ttgval 27217 ttgvalOLD 27218 opsqrlem3 30483 fedgmul 31691 mdetpmtr12 31754 madjusmdetlem4 31759 dya2iocival 32219 sxbrsigalem5 32234 sxbrsigalem6 32235 eulerpart 32328 sseqp1 32341 cvmliftlem15 33239 cvmlift2 33257 opnmbllem0 35792 mblfinlem1 35793 mblfinlem2 35794 sdc 35881 tendoplcbv 38768 dvhvaddcbv 39082 dvhvscacbv 39091 fsovcnvlem 41574 ntrneibex 41636 ioorrnopn 43800 hoidmvle 44092 ovnhoi 44095 hoimbl 44123 smflimlem6 44262 funcrngcsetc 45508 funcrngcsetcALT 45509 funcringcsetc 45545 lmod1zr 45786 functhinclem4 46277 |
Copyright terms: Public domain | W3C validator |