| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5195, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
| cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2816 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | eleq1w 2816 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) |
| 4 | cbvmpov.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
| 5 | cbvmpov.2 | . . . . . 6 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
| 6 | 4, 5 | sylan9eq 2788 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| 7 | 6 | eqeq2d 2744 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = 𝐶 ↔ 𝑣 = 𝐷)) |
| 8 | 3, 7 | anbi12d 632 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷))) |
| 9 | 8 | cbvoprab12v 7442 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} |
| 10 | df-mpo 7357 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} | |
| 11 | df-mpo 7357 | . 2 ⊢ (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} | |
| 12 | 9, 10, 11 | 3eqtr4i 2766 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {coprab 7353 ∈ cmpo 7354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-oprab 7356 df-mpo 7357 |
| This theorem is referenced by: fvproj 8070 seqomlem0 8374 dffi3 9322 cantnfsuc 9567 fin23lem33 10243 om2uzrdg 13865 uzrdgsuci 13869 sadcp1 16368 smupp1 16393 imasvscafn 17443 mgmnsgrpex 18841 sgrpnmndex 18842 sylow1 19517 sylow2b 19537 sylow3lem5 19545 sylow3 19547 efgmval 19626 efgtf 19636 funcrngcsetc 20557 funcrngcsetcALT 20558 funcringcsetc 20591 frlmphl 21720 pmatcollpw3lem 22699 mp2pm2mplem3 22724 txbas 23483 mpomulcn 24786 bcth 25257 opnmbl 25531 mbfimaopn 25585 mbfi1fseq 25650 om2noseqrdg 28235 noseqrdgsuc 28239 motplusg 28521 ttgval 28854 opsqrlem3 32124 elrgspnlem2 33217 splysubrg 33601 issply 33602 fedgmul 33665 mdetpmtr12 33859 madjusmdetlem4 33864 dya2iocival 34307 sxbrsigalem5 34322 sxbrsigalem6 34323 eulerpart 34416 sseqp1 34429 cvmliftlem15 35363 cvmlift2 35381 opnmbllem0 37716 mblfinlem1 37717 mblfinlem2 37718 sdc 37804 tendoplcbv 40894 dvhvaddcbv 41208 dvhvscacbv 41217 fsovcnvlem 44130 ntrneibex 44190 ioorrnopn 46427 hoidmvle 46722 ovnhoi 46725 hoimbl 46753 smflimlem6 46898 lmod1zr 48618 functhinclem4 49572 |
| Copyright terms: Public domain | W3C validator |