Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5156, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑧𝐶 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑤𝐶 | |
3 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐷 | |
4 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐷 | |
5 | cbvmpov.1 | . . 3 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
6 | cbvmpov.2 | . . 3 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
7 | 5, 6 | sylan9eq 2798 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
8 | 1, 2, 3, 4, 7 | cbvmpo 7305 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ cmpo 7215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-opab 5116 df-oprab 7217 df-mpo 7218 |
This theorem is referenced by: fvproj 7901 seqomlem0 8185 dffi3 9047 cantnfsuc 9285 fin23lem33 9959 om2uzrdg 13529 uzrdgsuci 13533 sadcp1 16014 smupp1 16039 imasvscafn 17042 mgmnsgrpex 18358 sgrpnmndex 18359 sylow1 18992 sylow2b 19012 sylow3lem5 19020 sylow3 19022 efgmval 19102 efgtf 19112 frlmphl 20743 pmatcollpw3lem 21680 mp2pm2mplem3 21705 txbas 22464 bcth 24226 opnmbl 24499 mbfimaopn 24553 mbfi1fseq 24619 motplusg 26633 ttgval 26966 opsqrlem3 30223 fedgmul 31426 mdetpmtr12 31489 madjusmdetlem4 31494 dya2iocival 31952 sxbrsigalem5 31967 sxbrsigalem6 31968 eulerpart 32061 sseqp1 32074 cvmliftlem15 32973 cvmlift2 32991 opnmbllem0 35550 mblfinlem1 35551 mblfinlem2 35552 sdc 35639 tendoplcbv 38526 dvhvaddcbv 38840 dvhvscacbv 38849 fsovcnvlem 41298 ntrneibex 41360 ioorrnopn 43521 hoidmvle 43813 ovnhoi 43816 hoimbl 43844 smflimlem6 43983 funcrngcsetc 45229 funcrngcsetcALT 45230 funcringcsetc 45266 lmod1zr 45507 functhinclem4 45998 |
Copyright terms: Public domain | W3C validator |