| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmpov | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5209, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
| cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2811 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | eleq1w 2811 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) |
| 4 | cbvmpov.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
| 5 | cbvmpov.2 | . . . . . 6 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
| 6 | 4, 5 | sylan9eq 2784 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| 7 | 6 | eqeq2d 2740 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = 𝐶 ↔ 𝑣 = 𝐷)) |
| 8 | 3, 7 | anbi12d 632 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷))) |
| 9 | 8 | cbvoprab12v 7479 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} |
| 10 | df-mpo 7392 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑣〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} | |
| 11 | df-mpo 7392 | . 2 ⊢ (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) = {〈〈𝑧, 𝑤〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑣 = 𝐷)} | |
| 12 | 9, 10, 11 | 3eqtr4i 2762 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {coprab 7388 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: fvproj 8113 seqomlem0 8417 dffi3 9382 cantnfsuc 9623 fin23lem33 10298 om2uzrdg 13921 uzrdgsuci 13925 sadcp1 16425 smupp1 16450 imasvscafn 17500 mgmnsgrpex 18858 sgrpnmndex 18859 sylow1 19533 sylow2b 19553 sylow3lem5 19561 sylow3 19563 efgmval 19642 efgtf 19652 funcrngcsetc 20549 funcrngcsetcALT 20550 funcringcsetc 20583 frlmphl 21690 pmatcollpw3lem 22670 mp2pm2mplem3 22695 txbas 23454 mpomulcn 24758 bcth 25229 opnmbl 25503 mbfimaopn 25557 mbfi1fseq 25622 om2noseqrdg 28198 noseqrdgsuc 28202 motplusg 28469 ttgval 28802 opsqrlem3 32071 elrgspnlem2 33194 fedgmul 33627 mdetpmtr12 33815 madjusmdetlem4 33820 dya2iocival 34264 sxbrsigalem5 34279 sxbrsigalem6 34280 eulerpart 34373 sseqp1 34386 cvmliftlem15 35285 cvmlift2 35303 opnmbllem0 37650 mblfinlem1 37651 mblfinlem2 37652 sdc 37738 tendoplcbv 40769 dvhvaddcbv 41083 dvhvscacbv 41092 fsovcnvlem 44002 ntrneibex 44062 ioorrnopn 46303 hoidmvle 46598 ovnhoi 46601 hoimbl 46629 smflimlem6 46774 lmod1zr 48482 functhinclem4 49436 |
| Copyright terms: Public domain | W3C validator |