MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpov Structured version   Visualization version   GIF version

Theorem cbvmpov 7447
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5195, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpov.1 (𝑥 = 𝑧𝐶 = 𝐸)
cbvmpov.2 (𝑦 = 𝑤𝐸 = 𝐷)
Assertion
Ref Expression
cbvmpov (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑧   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpov
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2816 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1w 2816 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
31, 2bi2anan9 638 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝐵)))
4 cbvmpov.1 . . . . . 6 (𝑥 = 𝑧𝐶 = 𝐸)
5 cbvmpov.2 . . . . . 6 (𝑦 = 𝑤𝐸 = 𝐷)
64, 5sylan9eq 2788 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
76eqeq2d 2744 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = 𝐶𝑣 = 𝐷))
83, 7anbi12d 632 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)))
98cbvoprab12v 7442 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)}
10 df-mpo 7357 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)}
11 df-mpo 7357 . 2 (𝑧𝐴, 𝑤𝐵𝐷) = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)}
129, 10, 113eqtr4i 2766 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {coprab 7353  cmpo 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-oprab 7356  df-mpo 7357
This theorem is referenced by:  fvproj  8070  seqomlem0  8374  dffi3  9322  cantnfsuc  9567  fin23lem33  10243  om2uzrdg  13865  uzrdgsuci  13869  sadcp1  16368  smupp1  16393  imasvscafn  17443  mgmnsgrpex  18841  sgrpnmndex  18842  sylow1  19517  sylow2b  19537  sylow3lem5  19545  sylow3  19547  efgmval  19626  efgtf  19636  funcrngcsetc  20557  funcrngcsetcALT  20558  funcringcsetc  20591  frlmphl  21720  pmatcollpw3lem  22699  mp2pm2mplem3  22724  txbas  23483  mpomulcn  24786  bcth  25257  opnmbl  25531  mbfimaopn  25585  mbfi1fseq  25650  om2noseqrdg  28235  noseqrdgsuc  28239  motplusg  28521  ttgval  28854  opsqrlem3  32124  elrgspnlem2  33217  splysubrg  33601  issply  33602  fedgmul  33665  mdetpmtr12  33859  madjusmdetlem4  33864  dya2iocival  34307  sxbrsigalem5  34322  sxbrsigalem6  34323  eulerpart  34416  sseqp1  34429  cvmliftlem15  35363  cvmlift2  35381  opnmbllem0  37716  mblfinlem1  37717  mblfinlem2  37718  sdc  37804  tendoplcbv  40894  dvhvaddcbv  41208  dvhvscacbv  41217  fsovcnvlem  44130  ntrneibex  44190  ioorrnopn  46427  hoidmvle  46722  ovnhoi  46725  hoimbl  46753  smflimlem6  46898  lmod1zr  48618  functhinclem4  49572
  Copyright terms: Public domain W3C validator