MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpov Structured version   Visualization version   GIF version

Theorem cbvmpov 7484
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5209, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpov.1 (𝑥 = 𝑧𝐶 = 𝐸)
cbvmpov.2 (𝑦 = 𝑤𝐸 = 𝐷)
Assertion
Ref Expression
cbvmpov (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑧   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpov
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2811 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1w 2811 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
31, 2bi2anan9 638 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝐵)))
4 cbvmpov.1 . . . . . 6 (𝑥 = 𝑧𝐶 = 𝐸)
5 cbvmpov.2 . . . . . 6 (𝑦 = 𝑤𝐸 = 𝐷)
64, 5sylan9eq 2784 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
76eqeq2d 2740 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = 𝐶𝑣 = 𝐷))
83, 7anbi12d 632 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)))
98cbvoprab12v 7479 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)}
10 df-mpo 7392 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)}
11 df-mpo 7392 . 2 (𝑧𝐴, 𝑤𝐵𝐷) = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝐵) ∧ 𝑣 = 𝐷)}
129, 10, 113eqtr4i 2762 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {coprab 7388  cmpo 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  fvproj  8113  seqomlem0  8417  dffi3  9382  cantnfsuc  9623  fin23lem33  10298  om2uzrdg  13921  uzrdgsuci  13925  sadcp1  16425  smupp1  16450  imasvscafn  17500  mgmnsgrpex  18858  sgrpnmndex  18859  sylow1  19533  sylow2b  19553  sylow3lem5  19561  sylow3  19563  efgmval  19642  efgtf  19652  funcrngcsetc  20549  funcrngcsetcALT  20550  funcringcsetc  20583  frlmphl  21690  pmatcollpw3lem  22670  mp2pm2mplem3  22695  txbas  23454  mpomulcn  24758  bcth  25229  opnmbl  25503  mbfimaopn  25557  mbfi1fseq  25622  om2noseqrdg  28198  noseqrdgsuc  28202  motplusg  28469  ttgval  28802  opsqrlem3  32071  elrgspnlem2  33194  fedgmul  33627  mdetpmtr12  33815  madjusmdetlem4  33820  dya2iocival  34264  sxbrsigalem5  34279  sxbrsigalem6  34280  eulerpart  34373  sseqp1  34386  cvmliftlem15  35285  cvmlift2  35303  opnmbllem0  37650  mblfinlem1  37651  mblfinlem2  37652  sdc  37738  tendoplcbv  40769  dvhvaddcbv  41083  dvhvscacbv  41092  fsovcnvlem  44002  ntrneibex  44062  ioorrnopn  46303  hoidmvle  46598  ovnhoi  46601  hoimbl  46629  smflimlem6  46774  lmod1zr  48482  functhinclem4  49436
  Copyright terms: Public domain W3C validator