MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintrabg Structured version   Visualization version   GIF version

Theorem elintrabg 4942
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elintrabg (𝐴𝑉 → (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem elintrabg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2823 . 2 (𝑦 = 𝐴 → (𝑦 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥𝐵𝜑}))
2 eleq1 2823 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32imbi2d 340 . . 3 (𝑦 = 𝐴 → ((𝜑𝑦𝑥) ↔ (𝜑𝐴𝑥)))
43ralbidv 3164 . 2 (𝑦 = 𝐴 → (∀𝑥𝐵 (𝜑𝑦𝑥) ↔ ∀𝑥𝐵 (𝜑𝐴𝑥)))
5 vex 3468 . . 3 𝑦 ∈ V
65elintrab 4941 . 2 (𝑦 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝑦𝑥))
71, 4, 6vtoclbg 3541 1 (𝐴𝑉 → (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3052  {crab 3420   cint 4927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-int 4928
This theorem is referenced by:  tskmid  10859  eltskm  10862  ldsysgenld  34196  ldgenpisyslem1  34199  elpcliN  39917  elmapintrab  43567
  Copyright terms: Public domain W3C validator