![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elintrabg | Structured version Visualization version GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
elintrabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) | |
2 | eleq1 2832 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝐴 ∈ 𝑥))) |
4 | 3 | ralbidv 3184 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 (𝜑 → 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
5 | vex 3492 | . . 3 ⊢ 𝑦 ∈ V | |
6 | 5 | elintrab 4984 | . 2 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝑦 ∈ 𝑥)) |
7 | 1, 4, 6 | vtoclbg 3569 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-int 4971 |
This theorem is referenced by: tskmid 10909 eltskm 10912 ldsysgenld 34124 ldgenpisyslem1 34127 elpcliN 39850 elmapintrab 43538 |
Copyright terms: Public domain | W3C validator |