![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elintrabg | Structured version Visualization version GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
elintrabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2820 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) | |
2 | eleq1 2820 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝐴 ∈ 𝑥))) |
4 | 3 | ralbidv 3176 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 (𝜑 → 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
5 | vex 3477 | . . 3 ⊢ 𝑦 ∈ V | |
6 | 5 | elintrab 4964 | . 2 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝑦 ∈ 𝑥)) |
7 | 1, 4, 6 | vtoclbg 3544 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 ∩ cint 4950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-int 4951 |
This theorem is referenced by: tskmid 10838 eltskm 10841 ldsysgenld 33457 ldgenpisyslem1 33460 elpcliN 39068 elmapintrab 42630 |
Copyright terms: Public domain | W3C validator |