![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskmid | Structured version Visualization version GIF version |
Description: The set 𝐴 is an element of the smallest Tarski class that contains 𝐴. CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
tskmid | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | |
2 | 1 | rgenw 3095 | . . 3 ⊢ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) |
3 | elintrabg 4759 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥))) | |
4 | 2, 3 | mpbiri 250 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
5 | tskmval 10058 | . 2 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
6 | 4, 5 | eleqtrrd 2864 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 ∀wral 3083 {crab 3087 ∩ cint 4746 ‘cfv 6186 Tarskictsk 9967 tarskiMapctskm 10056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 ax-groth 10042 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-int 4747 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-iota 6150 df-fun 6188 df-fv 6194 df-tsk 9968 df-tskm 10057 |
This theorem is referenced by: eltskm 10062 |
Copyright terms: Public domain | W3C validator |