MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmid Structured version   Visualization version   GIF version

Theorem tskmid 10909
Description: The set 𝐴 is an element of the smallest Tarski class that contains 𝐴. CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
tskmid (𝐴𝑉𝐴 ∈ (tarskiMap‘𝐴))

Proof of Theorem tskmid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴𝑥𝐴𝑥)
21rgenw 3071 . . 3 𝑥 ∈ Tarski (𝐴𝑥𝐴𝑥)
3 elintrabg 4985 . . 3 (𝐴𝑉 → (𝐴 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐴𝑥)))
42, 3mpbiri 258 . 2 (𝐴𝑉𝐴 {𝑥 ∈ Tarski ∣ 𝐴𝑥})
5 tskmval 10908 . 2 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
64, 5eleqtrrd 2847 1 (𝐴𝑉𝐴 ∈ (tarskiMap‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3067  {crab 3443   cint 4970  cfv 6573  Tarskictsk 10817  tarskiMapctskm 10906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-groth 10892
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-tsk 10818  df-tskm 10907
This theorem is referenced by:  eltskm  10912
  Copyright terms: Public domain W3C validator