MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmid Structured version   Visualization version   GIF version

Theorem tskmid 10800
Description: The set 𝐴 is an element of the smallest Tarski class that contains 𝐴. CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
tskmid (𝐴𝑉𝐴 ∈ (tarskiMap‘𝐴))

Proof of Theorem tskmid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴𝑥𝐴𝑥)
21rgenw 3049 . . 3 𝑥 ∈ Tarski (𝐴𝑥𝐴𝑥)
3 elintrabg 4928 . . 3 (𝐴𝑉 → (𝐴 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐴𝑥)))
42, 3mpbiri 258 . 2 (𝐴𝑉𝐴 {𝑥 ∈ Tarski ∣ 𝐴𝑥})
5 tskmval 10799 . 2 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
64, 5eleqtrrd 2832 1 (𝐴𝑉𝐴 ∈ (tarskiMap‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3045  {crab 3408   cint 4913  cfv 6514  Tarskictsk 10708  tarskiMapctskm 10797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-groth 10783
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-tsk 10709  df-tskm 10798
This theorem is referenced by:  eltskm  10803
  Copyright terms: Public domain W3C validator