MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmid Structured version   Visualization version   GIF version

Theorem tskmid 10731
Description: The set 𝐴 is an element of the smallest Tarski class that contains 𝐴. CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
tskmid (𝐴𝑉𝐴 ∈ (tarskiMap‘𝐴))

Proof of Theorem tskmid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴𝑥𝐴𝑥)
21rgenw 3051 . . 3 𝑥 ∈ Tarski (𝐴𝑥𝐴𝑥)
3 elintrabg 4911 . . 3 (𝐴𝑉 → (𝐴 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐴𝑥)))
42, 3mpbiri 258 . 2 (𝐴𝑉𝐴 {𝑥 ∈ Tarski ∣ 𝐴𝑥})
5 tskmval 10730 . 2 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
64, 5eleqtrrd 2834 1 (𝐴𝑉𝐴 ∈ (tarskiMap‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047  {crab 3395   cint 4897  cfv 6481  Tarskictsk 10639  tarskiMapctskm 10728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-groth 10714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-tsk 10640  df-tskm 10729
This theorem is referenced by:  eltskm  10734
  Copyright terms: Public domain W3C validator