|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > tskmid | Structured version Visualization version GIF version | ||
| Description: The set 𝐴 is an element of the smallest Tarski class that contains 𝐴. CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) | 
| Ref | Expression | 
|---|---|
| tskmid | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | |
| 2 | 1 | rgenw 3065 | . . 3 ⊢ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | 
| 3 | elintrabg 4961 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥))) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | 
| 5 | tskmval 10879 | . 2 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
| 6 | 4, 5 | eleqtrrd 2844 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3061 {crab 3436 ∩ cint 4946 ‘cfv 6561 Tarskictsk 10788 tarskiMapctskm 10877 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-groth 10863 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-tsk 10789 df-tskm 10878 | 
| This theorem is referenced by: eltskm 10883 | 
| Copyright terms: Public domain | W3C validator |