Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpcliN Structured version   Visualization version   GIF version

Theorem elpcliN 39894
Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpcli.s 𝑆 = (PSubSp‘𝐾)
elpcli.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
elpcliN (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)

Proof of Theorem elpcliN
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝐾𝑉)
2 simp2 1137 . . . . . . 7 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑋𝑌)
3 eqid 2730 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
4 elpcli.s . . . . . . . . 9 𝑆 = (PSubSp‘𝐾)
53, 4psubssat 39755 . . . . . . . 8 ((𝐾𝑉𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
653adant2 1131 . . . . . . 7 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
72, 6sstrd 3960 . . . . . 6 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
8 elpcli.c . . . . . . 7 𝑈 = (PCl‘𝐾)
93, 4, 8pclvalN 39891 . . . . . 6 ((𝐾𝑉𝑋 ⊆ (Atoms‘𝐾)) → (𝑈𝑋) = {𝑧𝑆𝑋𝑧})
101, 7, 9syl2anc 584 . . . . 5 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑈𝑋) = {𝑧𝑆𝑋𝑧})
1110eleq2d 2815 . . . 4 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) ↔ 𝑄 {𝑧𝑆𝑋𝑧}))
12 elintrabg 4928 . . . . 5 (𝑄 {𝑧𝑆𝑋𝑧} → (𝑄 {𝑧𝑆𝑋𝑧} ↔ ∀𝑧𝑆 (𝑋𝑧𝑄𝑧)))
1312ibi 267 . . . 4 (𝑄 {𝑧𝑆𝑋𝑧} → ∀𝑧𝑆 (𝑋𝑧𝑄𝑧))
1411, 13biimtrdi 253 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) → ∀𝑧𝑆 (𝑋𝑧𝑄𝑧)))
15 sseq2 3976 . . . . . . . 8 (𝑧 = 𝑌 → (𝑋𝑧𝑋𝑌))
16 eleq2 2818 . . . . . . . 8 (𝑧 = 𝑌 → (𝑄𝑧𝑄𝑌))
1715, 16imbi12d 344 . . . . . . 7 (𝑧 = 𝑌 → ((𝑋𝑧𝑄𝑧) ↔ (𝑋𝑌𝑄𝑌)))
1817rspccv 3588 . . . . . 6 (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → (𝑌𝑆 → (𝑋𝑌𝑄𝑌)))
1918com13 88 . . . . 5 (𝑋𝑌 → (𝑌𝑆 → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌)))
2019imp 406 . . . 4 ((𝑋𝑌𝑌𝑆) → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌))
21203adant1 1130 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌))
2214, 21syld 47 . 2 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) → 𝑄𝑌))
2322imp 406 1 (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  wss 3917   cint 4913  cfv 6514  Atomscatm 39263  PSubSpcpsubsp 39497  PClcpclN 39888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-psubsp 39504  df-pclN 39889
This theorem is referenced by:  pclfinclN  39951
  Copyright terms: Public domain W3C validator