Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpcliN Structured version   Visualization version   GIF version

Theorem elpcliN 39858
Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpcli.s 𝑆 = (PSubSp‘𝐾)
elpcli.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
elpcliN (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)

Proof of Theorem elpcliN
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝐾𝑉)
2 simp2 1137 . . . . . . 7 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑋𝑌)
3 eqid 2735 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
4 elpcli.s . . . . . . . . 9 𝑆 = (PSubSp‘𝐾)
53, 4psubssat 39719 . . . . . . . 8 ((𝐾𝑉𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
653adant2 1131 . . . . . . 7 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
72, 6sstrd 3969 . . . . . 6 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
8 elpcli.c . . . . . . 7 𝑈 = (PCl‘𝐾)
93, 4, 8pclvalN 39855 . . . . . 6 ((𝐾𝑉𝑋 ⊆ (Atoms‘𝐾)) → (𝑈𝑋) = {𝑧𝑆𝑋𝑧})
101, 7, 9syl2anc 584 . . . . 5 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑈𝑋) = {𝑧𝑆𝑋𝑧})
1110eleq2d 2820 . . . 4 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) ↔ 𝑄 {𝑧𝑆𝑋𝑧}))
12 elintrabg 4937 . . . . 5 (𝑄 {𝑧𝑆𝑋𝑧} → (𝑄 {𝑧𝑆𝑋𝑧} ↔ ∀𝑧𝑆 (𝑋𝑧𝑄𝑧)))
1312ibi 267 . . . 4 (𝑄 {𝑧𝑆𝑋𝑧} → ∀𝑧𝑆 (𝑋𝑧𝑄𝑧))
1411, 13biimtrdi 253 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) → ∀𝑧𝑆 (𝑋𝑧𝑄𝑧)))
15 sseq2 3985 . . . . . . . 8 (𝑧 = 𝑌 → (𝑋𝑧𝑋𝑌))
16 eleq2 2823 . . . . . . . 8 (𝑧 = 𝑌 → (𝑄𝑧𝑄𝑌))
1715, 16imbi12d 344 . . . . . . 7 (𝑧 = 𝑌 → ((𝑋𝑧𝑄𝑧) ↔ (𝑋𝑌𝑄𝑌)))
1817rspccv 3598 . . . . . 6 (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → (𝑌𝑆 → (𝑋𝑌𝑄𝑌)))
1918com13 88 . . . . 5 (𝑋𝑌 → (𝑌𝑆 → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌)))
2019imp 406 . . . 4 ((𝑋𝑌𝑌𝑆) → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌))
21203adant1 1130 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌))
2214, 21syld 47 . 2 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) → 𝑄𝑌))
2322imp 406 1 (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  wss 3926   cint 4922  cfv 6530  Atomscatm 39227  PSubSpcpsubsp 39461  PClcpclN 39852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-psubsp 39468  df-pclN 39853
This theorem is referenced by:  pclfinclN  39915
  Copyright terms: Public domain W3C validator