Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpcliN Structured version   Visualization version   GIF version

Theorem elpcliN 37205
 Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpcli.s 𝑆 = (PSubSp‘𝐾)
elpcli.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
elpcliN (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)

Proof of Theorem elpcliN
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . . 6 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝐾𝑉)
2 simp2 1134 . . . . . . 7 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑋𝑌)
3 eqid 2798 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
4 elpcli.s . . . . . . . . 9 𝑆 = (PSubSp‘𝐾)
53, 4psubssat 37066 . . . . . . . 8 ((𝐾𝑉𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
653adant2 1128 . . . . . . 7 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
72, 6sstrd 3925 . . . . . 6 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
8 elpcli.c . . . . . . 7 𝑈 = (PCl‘𝐾)
93, 4, 8pclvalN 37202 . . . . . 6 ((𝐾𝑉𝑋 ⊆ (Atoms‘𝐾)) → (𝑈𝑋) = {𝑧𝑆𝑋𝑧})
101, 7, 9syl2anc 587 . . . . 5 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑈𝑋) = {𝑧𝑆𝑋𝑧})
1110eleq2d 2875 . . . 4 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) ↔ 𝑄 {𝑧𝑆𝑋𝑧}))
12 elintrabg 4851 . . . . 5 (𝑄 {𝑧𝑆𝑋𝑧} → (𝑄 {𝑧𝑆𝑋𝑧} ↔ ∀𝑧𝑆 (𝑋𝑧𝑄𝑧)))
1312ibi 270 . . . 4 (𝑄 {𝑧𝑆𝑋𝑧} → ∀𝑧𝑆 (𝑋𝑧𝑄𝑧))
1411, 13syl6bi 256 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) → ∀𝑧𝑆 (𝑋𝑧𝑄𝑧)))
15 sseq2 3941 . . . . . . . 8 (𝑧 = 𝑌 → (𝑋𝑧𝑋𝑌))
16 eleq2 2878 . . . . . . . 8 (𝑧 = 𝑌 → (𝑄𝑧𝑄𝑌))
1715, 16imbi12d 348 . . . . . . 7 (𝑧 = 𝑌 → ((𝑋𝑧𝑄𝑧) ↔ (𝑋𝑌𝑄𝑌)))
1817rspccv 3568 . . . . . 6 (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → (𝑌𝑆 → (𝑋𝑌𝑄𝑌)))
1918com13 88 . . . . 5 (𝑋𝑌 → (𝑌𝑆 → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌)))
2019imp 410 . . . 4 ((𝑋𝑌𝑌𝑆) → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌))
21203adant1 1127 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌))
2214, 21syld 47 . 2 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) → 𝑄𝑌))
2322imp 410 1 (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110   ⊆ wss 3881  ∩ cint 4838  ‘cfv 6324  Atomscatm 36575  PSubSpcpsubsp 36808  PClcpclN 37199 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-psubsp 36815  df-pclN 37200 This theorem is referenced by:  pclfinclN  37262
 Copyright terms: Public domain W3C validator