Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpcliN Structured version   Visualization version   GIF version

Theorem elpcliN 39872
Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpcli.s 𝑆 = (PSubSp‘𝐾)
elpcli.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
elpcliN (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)

Proof of Theorem elpcliN
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝐾𝑉)
2 simp2 1137 . . . . . . 7 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑋𝑌)
3 eqid 2729 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
4 elpcli.s . . . . . . . . 9 𝑆 = (PSubSp‘𝐾)
53, 4psubssat 39733 . . . . . . . 8 ((𝐾𝑉𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
653adant2 1131 . . . . . . 7 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
72, 6sstrd 3948 . . . . . 6 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
8 elpcli.c . . . . . . 7 𝑈 = (PCl‘𝐾)
93, 4, 8pclvalN 39869 . . . . . 6 ((𝐾𝑉𝑋 ⊆ (Atoms‘𝐾)) → (𝑈𝑋) = {𝑧𝑆𝑋𝑧})
101, 7, 9syl2anc 584 . . . . 5 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑈𝑋) = {𝑧𝑆𝑋𝑧})
1110eleq2d 2814 . . . 4 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) ↔ 𝑄 {𝑧𝑆𝑋𝑧}))
12 elintrabg 4914 . . . . 5 (𝑄 {𝑧𝑆𝑋𝑧} → (𝑄 {𝑧𝑆𝑋𝑧} ↔ ∀𝑧𝑆 (𝑋𝑧𝑄𝑧)))
1312ibi 267 . . . 4 (𝑄 {𝑧𝑆𝑋𝑧} → ∀𝑧𝑆 (𝑋𝑧𝑄𝑧))
1411, 13biimtrdi 253 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) → ∀𝑧𝑆 (𝑋𝑧𝑄𝑧)))
15 sseq2 3964 . . . . . . . 8 (𝑧 = 𝑌 → (𝑋𝑧𝑋𝑌))
16 eleq2 2817 . . . . . . . 8 (𝑧 = 𝑌 → (𝑄𝑧𝑄𝑌))
1715, 16imbi12d 344 . . . . . . 7 (𝑧 = 𝑌 → ((𝑋𝑧𝑄𝑧) ↔ (𝑋𝑌𝑄𝑌)))
1817rspccv 3576 . . . . . 6 (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → (𝑌𝑆 → (𝑋𝑌𝑄𝑌)))
1918com13 88 . . . . 5 (𝑋𝑌 → (𝑌𝑆 → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌)))
2019imp 406 . . . 4 ((𝑋𝑌𝑌𝑆) → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌))
21203adant1 1130 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌))
2214, 21syld 47 . 2 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) → 𝑄𝑌))
2322imp 406 1 (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3396  wss 3905   cint 4899  cfv 6486  Atomscatm 39241  PSubSpcpsubsp 39475  PClcpclN 39866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-psubsp 39482  df-pclN 39867
This theorem is referenced by:  pclfinclN  39929
  Copyright terms: Public domain W3C validator