| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpcliN | Structured version Visualization version GIF version | ||
| Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elpcli.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| elpcli.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| elpcliN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝐾 ∈ 𝑉) | |
| 2 | simp2 1137 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ 𝑌) | |
| 3 | eqid 2733 | . . . . . . . . 9 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 4 | elpcli.s | . . . . . . . . 9 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 5 | 3, 4 | psubssat 39873 | . . . . . . . 8 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 6 | 5 | 3adant2 1131 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 7 | 2, 6 | sstrd 3941 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 8 | elpcli.c | . . . . . . 7 ⊢ 𝑈 = (PCl‘𝐾) | |
| 9 | 3, 4, 8 | pclvalN 40009 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑈‘𝑋) = ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧}) |
| 10 | 1, 7, 9 | syl2anc 584 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑈‘𝑋) = ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧}) |
| 11 | 10 | eleq2d 2819 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) ↔ 𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧})) |
| 12 | elintrabg 4911 | . . . . 5 ⊢ (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} → (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} ↔ ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧))) | |
| 13 | 12 | ibi 267 | . . . 4 ⊢ (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} → ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧)) |
| 14 | 11, 13 | biimtrdi 253 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) → ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧))) |
| 15 | sseq2 3957 | . . . . . . . 8 ⊢ (𝑧 = 𝑌 → (𝑋 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑌)) | |
| 16 | eleq2 2822 | . . . . . . . 8 ⊢ (𝑧 = 𝑌 → (𝑄 ∈ 𝑧 ↔ 𝑄 ∈ 𝑌)) | |
| 17 | 15, 16 | imbi12d 344 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → ((𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) ↔ (𝑋 ⊆ 𝑌 → 𝑄 ∈ 𝑌))) |
| 18 | 17 | rspccv 3570 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → (𝑌 ∈ 𝑆 → (𝑋 ⊆ 𝑌 → 𝑄 ∈ 𝑌))) |
| 19 | 18 | com13 88 | . . . . 5 ⊢ (𝑋 ⊆ 𝑌 → (𝑌 ∈ 𝑆 → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌))) |
| 20 | 19 | imp 406 | . . . 4 ⊢ ((𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌)) |
| 21 | 20 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌)) |
| 22 | 14, 21 | syld 47 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) → 𝑄 ∈ 𝑌)) |
| 23 | 22 | imp 406 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ⊆ wss 3898 ∩ cint 4897 ‘cfv 6486 Atomscatm 39382 PSubSpcpsubsp 39615 PClcpclN 40006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-psubsp 39622 df-pclN 40007 |
| This theorem is referenced by: pclfinclN 40069 |
| Copyright terms: Public domain | W3C validator |