| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpcliN | Structured version Visualization version GIF version | ||
| Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elpcli.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| elpcli.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| elpcliN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝐾 ∈ 𝑉) | |
| 2 | simp2 1137 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ 𝑌) | |
| 3 | eqid 2730 | . . . . . . . . 9 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 4 | elpcli.s | . . . . . . . . 9 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 5 | 3, 4 | psubssat 39755 | . . . . . . . 8 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 6 | 5 | 3adant2 1131 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 7 | 2, 6 | sstrd 3960 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 8 | elpcli.c | . . . . . . 7 ⊢ 𝑈 = (PCl‘𝐾) | |
| 9 | 3, 4, 8 | pclvalN 39891 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑈‘𝑋) = ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧}) |
| 10 | 1, 7, 9 | syl2anc 584 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑈‘𝑋) = ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧}) |
| 11 | 10 | eleq2d 2815 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) ↔ 𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧})) |
| 12 | elintrabg 4928 | . . . . 5 ⊢ (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} → (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} ↔ ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧))) | |
| 13 | 12 | ibi 267 | . . . 4 ⊢ (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} → ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧)) |
| 14 | 11, 13 | biimtrdi 253 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) → ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧))) |
| 15 | sseq2 3976 | . . . . . . . 8 ⊢ (𝑧 = 𝑌 → (𝑋 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑌)) | |
| 16 | eleq2 2818 | . . . . . . . 8 ⊢ (𝑧 = 𝑌 → (𝑄 ∈ 𝑧 ↔ 𝑄 ∈ 𝑌)) | |
| 17 | 15, 16 | imbi12d 344 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → ((𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) ↔ (𝑋 ⊆ 𝑌 → 𝑄 ∈ 𝑌))) |
| 18 | 17 | rspccv 3588 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → (𝑌 ∈ 𝑆 → (𝑋 ⊆ 𝑌 → 𝑄 ∈ 𝑌))) |
| 19 | 18 | com13 88 | . . . . 5 ⊢ (𝑋 ⊆ 𝑌 → (𝑌 ∈ 𝑆 → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌))) |
| 20 | 19 | imp 406 | . . . 4 ⊢ ((𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌)) |
| 21 | 20 | 3adant1 1130 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌)) |
| 22 | 14, 21 | syld 47 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) → 𝑄 ∈ 𝑌)) |
| 23 | 22 | imp 406 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 ∩ cint 4913 ‘cfv 6514 Atomscatm 39263 PSubSpcpsubsp 39497 PClcpclN 39888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-psubsp 39504 df-pclN 39889 |
| This theorem is referenced by: pclfinclN 39951 |
| Copyright terms: Public domain | W3C validator |