Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpcliN Structured version   Visualization version   GIF version

Theorem elpcliN 39850
Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpcli.s 𝑆 = (PSubSp‘𝐾)
elpcli.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
elpcliN (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)

Proof of Theorem elpcliN
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝐾𝑉)
2 simp2 1137 . . . . . . 7 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑋𝑌)
3 eqid 2740 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
4 elpcli.s . . . . . . . . 9 𝑆 = (PSubSp‘𝐾)
53, 4psubssat 39711 . . . . . . . 8 ((𝐾𝑉𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
653adant2 1131 . . . . . . 7 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
72, 6sstrd 4019 . . . . . 6 ((𝐾𝑉𝑋𝑌𝑌𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
8 elpcli.c . . . . . . 7 𝑈 = (PCl‘𝐾)
93, 4, 8pclvalN 39847 . . . . . 6 ((𝐾𝑉𝑋 ⊆ (Atoms‘𝐾)) → (𝑈𝑋) = {𝑧𝑆𝑋𝑧})
101, 7, 9syl2anc 583 . . . . 5 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑈𝑋) = {𝑧𝑆𝑋𝑧})
1110eleq2d 2830 . . . 4 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) ↔ 𝑄 {𝑧𝑆𝑋𝑧}))
12 elintrabg 4985 . . . . 5 (𝑄 {𝑧𝑆𝑋𝑧} → (𝑄 {𝑧𝑆𝑋𝑧} ↔ ∀𝑧𝑆 (𝑋𝑧𝑄𝑧)))
1312ibi 267 . . . 4 (𝑄 {𝑧𝑆𝑋𝑧} → ∀𝑧𝑆 (𝑋𝑧𝑄𝑧))
1411, 13biimtrdi 253 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) → ∀𝑧𝑆 (𝑋𝑧𝑄𝑧)))
15 sseq2 4035 . . . . . . . 8 (𝑧 = 𝑌 → (𝑋𝑧𝑋𝑌))
16 eleq2 2833 . . . . . . . 8 (𝑧 = 𝑌 → (𝑄𝑧𝑄𝑌))
1715, 16imbi12d 344 . . . . . . 7 (𝑧 = 𝑌 → ((𝑋𝑧𝑄𝑧) ↔ (𝑋𝑌𝑄𝑌)))
1817rspccv 3632 . . . . . 6 (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → (𝑌𝑆 → (𝑋𝑌𝑄𝑌)))
1918com13 88 . . . . 5 (𝑋𝑌 → (𝑌𝑆 → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌)))
2019imp 406 . . . 4 ((𝑋𝑌𝑌𝑆) → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌))
21203adant1 1130 . . 3 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (∀𝑧𝑆 (𝑋𝑧𝑄𝑧) → 𝑄𝑌))
2214, 21syld 47 . 2 ((𝐾𝑉𝑋𝑌𝑌𝑆) → (𝑄 ∈ (𝑈𝑋) → 𝑄𝑌))
2322imp 406 1 (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976   cint 4970  cfv 6573  Atomscatm 39219  PSubSpcpsubsp 39453  PClcpclN 39844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-psubsp 39460  df-pclN 39845
This theorem is referenced by:  pclfinclN  39907
  Copyright terms: Public domain W3C validator