Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpcliN | Structured version Visualization version GIF version |
Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpcli.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
elpcli.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
elpcliN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1138 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝐾 ∈ 𝑉) | |
2 | simp2 1139 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ 𝑌) | |
3 | eqid 2737 | . . . . . . . . 9 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | elpcli.s | . . . . . . . . 9 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | 3, 4 | psubssat 37505 | . . . . . . . 8 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
6 | 5 | 3adant2 1133 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
7 | 2, 6 | sstrd 3911 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
8 | elpcli.c | . . . . . . 7 ⊢ 𝑈 = (PCl‘𝐾) | |
9 | 3, 4, 8 | pclvalN 37641 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑈‘𝑋) = ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧}) |
10 | 1, 7, 9 | syl2anc 587 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑈‘𝑋) = ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧}) |
11 | 10 | eleq2d 2823 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) ↔ 𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧})) |
12 | elintrabg 4872 | . . . . 5 ⊢ (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} → (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} ↔ ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧))) | |
13 | 12 | ibi 270 | . . . 4 ⊢ (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} → ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧)) |
14 | 11, 13 | syl6bi 256 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) → ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧))) |
15 | sseq2 3927 | . . . . . . . 8 ⊢ (𝑧 = 𝑌 → (𝑋 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑌)) | |
16 | eleq2 2826 | . . . . . . . 8 ⊢ (𝑧 = 𝑌 → (𝑄 ∈ 𝑧 ↔ 𝑄 ∈ 𝑌)) | |
17 | 15, 16 | imbi12d 348 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → ((𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) ↔ (𝑋 ⊆ 𝑌 → 𝑄 ∈ 𝑌))) |
18 | 17 | rspccv 3534 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → (𝑌 ∈ 𝑆 → (𝑋 ⊆ 𝑌 → 𝑄 ∈ 𝑌))) |
19 | 18 | com13 88 | . . . . 5 ⊢ (𝑋 ⊆ 𝑌 → (𝑌 ∈ 𝑆 → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌))) |
20 | 19 | imp 410 | . . . 4 ⊢ ((𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌)) |
21 | 20 | 3adant1 1132 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌)) |
22 | 14, 21 | syld 47 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) → 𝑄 ∈ 𝑌)) |
23 | 22 | imp 410 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 ⊆ wss 3866 ∩ cint 4859 ‘cfv 6380 Atomscatm 37014 PSubSpcpsubsp 37247 PClcpclN 37638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-psubsp 37254 df-pclN 37639 |
This theorem is referenced by: pclfinclN 37701 |
Copyright terms: Public domain | W3C validator |