MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltskm Structured version   Visualization version   GIF version

Theorem eltskm 10803
Description: Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
eltskm (𝐴𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem eltskm
StepHypRef Expression
1 tskmval 10799 . . 3 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
21eleq2d 2815 . 2 (𝐴𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ 𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥}))
3 elex 3471 . . . 4 (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} → 𝐵 ∈ V)
43a1i 11 . . 3 (𝐴𝑉 → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} → 𝐵 ∈ V))
5 tskmid 10800 . . . . 5 (𝐴𝑉𝐴 ∈ (tarskiMap‘𝐴))
6 tskmcl 10801 . . . . . 6 (tarskiMap‘𝐴) ∈ Tarski
7 eleq2 2818 . . . . . . . 8 (𝑥 = (tarskiMap‘𝐴) → (𝐴𝑥𝐴 ∈ (tarskiMap‘𝐴)))
8 eleq2 2818 . . . . . . . 8 (𝑥 = (tarskiMap‘𝐴) → (𝐵𝑥𝐵 ∈ (tarskiMap‘𝐴)))
97, 8imbi12d 344 . . . . . . 7 (𝑥 = (tarskiMap‘𝐴) → ((𝐴𝑥𝐵𝑥) ↔ (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))))
109rspcv 3587 . . . . . 6 ((tarskiMap‘𝐴) ∈ Tarski → (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))))
116, 10ax-mp 5 . . . . 5 (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))
125, 11syl5com 31 . . . 4 (𝐴𝑉 → (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → 𝐵 ∈ (tarskiMap‘𝐴)))
13 elex 3471 . . . 4 (𝐵 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ V)
1412, 13syl6 35 . . 3 (𝐴𝑉 → (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → 𝐵 ∈ V))
15 elintrabg 4928 . . . 4 (𝐵 ∈ V → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
1615a1i 11 . . 3 (𝐴𝑉 → (𝐵 ∈ V → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥))))
174, 14, 16pm5.21ndd 379 . 2 (𝐴𝑉 → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
182, 17bitrd 279 1 (𝐴𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450   cint 4913  cfv 6514  Tarskictsk 10708  tarskiMapctskm 10797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-groth 10783
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-tsk 10709  df-tskm 10798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator