Step | Hyp | Ref
| Expression |
1 | | tskmval 10838 |
. . 3
β’ (π΄ β π β (tarskiMapβπ΄) = β© {π₯ β Tarski β£ π΄ β π₯}) |
2 | 1 | eleq2d 2817 |
. 2
β’ (π΄ β π β (π΅ β (tarskiMapβπ΄) β π΅ β β© {π₯ β Tarski β£ π΄ β π₯})) |
3 | | elex 3491 |
. . . 4
β’ (π΅ β β© {π₯
β Tarski β£ π΄
β π₯} β π΅ β V) |
4 | 3 | a1i 11 |
. . 3
β’ (π΄ β π β (π΅ β β© {π₯ β Tarski β£ π΄ β π₯} β π΅ β V)) |
5 | | tskmid 10839 |
. . . . 5
β’ (π΄ β π β π΄ β (tarskiMapβπ΄)) |
6 | | tskmcl 10840 |
. . . . . 6
β’
(tarskiMapβπ΄)
β Tarski |
7 | | eleq2 2820 |
. . . . . . . 8
β’ (π₯ = (tarskiMapβπ΄) β (π΄ β π₯ β π΄ β (tarskiMapβπ΄))) |
8 | | eleq2 2820 |
. . . . . . . 8
β’ (π₯ = (tarskiMapβπ΄) β (π΅ β π₯ β π΅ β (tarskiMapβπ΄))) |
9 | 7, 8 | imbi12d 343 |
. . . . . . 7
β’ (π₯ = (tarskiMapβπ΄) β ((π΄ β π₯ β π΅ β π₯) β (π΄ β (tarskiMapβπ΄) β π΅ β (tarskiMapβπ΄)))) |
10 | 9 | rspcv 3609 |
. . . . . 6
β’
((tarskiMapβπ΄)
β Tarski β (βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯) β (π΄ β (tarskiMapβπ΄) β π΅ β (tarskiMapβπ΄)))) |
11 | 6, 10 | ax-mp 5 |
. . . . 5
β’
(βπ₯ β
Tarski (π΄ β π₯ β π΅ β π₯) β (π΄ β (tarskiMapβπ΄) β π΅ β (tarskiMapβπ΄))) |
12 | 5, 11 | syl5com 31 |
. . . 4
β’ (π΄ β π β (βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯) β π΅ β (tarskiMapβπ΄))) |
13 | | elex 3491 |
. . . 4
β’ (π΅ β (tarskiMapβπ΄) β π΅ β V) |
14 | 12, 13 | syl6 35 |
. . 3
β’ (π΄ β π β (βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯) β π΅ β V)) |
15 | | elintrabg 4966 |
. . . 4
β’ (π΅ β V β (π΅ β β© {π₯
β Tarski β£ π΄
β π₯} β
βπ₯ β Tarski
(π΄ β π₯ β π΅ β π₯))) |
16 | 15 | a1i 11 |
. . 3
β’ (π΄ β π β (π΅ β V β (π΅ β β© {π₯ β Tarski β£ π΄ β π₯} β βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯)))) |
17 | 4, 14, 16 | pm5.21ndd 378 |
. 2
β’ (π΄ β π β (π΅ β β© {π₯ β Tarski β£ π΄ β π₯} β βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯))) |
18 | 2, 17 | bitrd 278 |
1
β’ (π΄ β π β (π΅ β (tarskiMapβπ΄) β βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯))) |