MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltskm Structured version   Visualization version   GIF version

Theorem eltskm 10842
Description: Belonging to (tarskiMapβ€˜π΄). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
eltskm (𝐴 ∈ 𝑉 β†’ (𝐡 ∈ (tarskiMapβ€˜π΄) ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 ∈ π‘₯)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡
Allowed substitution hint:   𝑉(π‘₯)

Proof of Theorem eltskm
StepHypRef Expression
1 tskmval 10838 . . 3 (𝐴 ∈ 𝑉 β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
21eleq2d 2817 . 2 (𝐴 ∈ 𝑉 β†’ (𝐡 ∈ (tarskiMapβ€˜π΄) ↔ 𝐡 ∈ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯}))
3 elex 3491 . . . 4 (𝐡 ∈ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} β†’ 𝐡 ∈ V)
43a1i 11 . . 3 (𝐴 ∈ 𝑉 β†’ (𝐡 ∈ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} β†’ 𝐡 ∈ V))
5 tskmid 10839 . . . . 5 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ (tarskiMapβ€˜π΄))
6 tskmcl 10840 . . . . . 6 (tarskiMapβ€˜π΄) ∈ Tarski
7 eleq2 2820 . . . . . . . 8 (π‘₯ = (tarskiMapβ€˜π΄) β†’ (𝐴 ∈ π‘₯ ↔ 𝐴 ∈ (tarskiMapβ€˜π΄)))
8 eleq2 2820 . . . . . . . 8 (π‘₯ = (tarskiMapβ€˜π΄) β†’ (𝐡 ∈ π‘₯ ↔ 𝐡 ∈ (tarskiMapβ€˜π΄)))
97, 8imbi12d 343 . . . . . . 7 (π‘₯ = (tarskiMapβ€˜π΄) β†’ ((𝐴 ∈ π‘₯ β†’ 𝐡 ∈ π‘₯) ↔ (𝐴 ∈ (tarskiMapβ€˜π΄) β†’ 𝐡 ∈ (tarskiMapβ€˜π΄))))
109rspcv 3609 . . . . . 6 ((tarskiMapβ€˜π΄) ∈ Tarski β†’ (βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 ∈ π‘₯) β†’ (𝐴 ∈ (tarskiMapβ€˜π΄) β†’ 𝐡 ∈ (tarskiMapβ€˜π΄))))
116, 10ax-mp 5 . . . . 5 (βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 ∈ π‘₯) β†’ (𝐴 ∈ (tarskiMapβ€˜π΄) β†’ 𝐡 ∈ (tarskiMapβ€˜π΄)))
125, 11syl5com 31 . . . 4 (𝐴 ∈ 𝑉 β†’ (βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 ∈ π‘₯) β†’ 𝐡 ∈ (tarskiMapβ€˜π΄)))
13 elex 3491 . . . 4 (𝐡 ∈ (tarskiMapβ€˜π΄) β†’ 𝐡 ∈ V)
1412, 13syl6 35 . . 3 (𝐴 ∈ 𝑉 β†’ (βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 ∈ π‘₯) β†’ 𝐡 ∈ V))
15 elintrabg 4966 . . . 4 (𝐡 ∈ V β†’ (𝐡 ∈ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 ∈ π‘₯)))
1615a1i 11 . . 3 (𝐴 ∈ 𝑉 β†’ (𝐡 ∈ V β†’ (𝐡 ∈ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 ∈ π‘₯))))
174, 14, 16pm5.21ndd 378 . 2 (𝐴 ∈ 𝑉 β†’ (𝐡 ∈ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 ∈ π‘₯)))
182, 17bitrd 278 1 (𝐴 ∈ 𝑉 β†’ (𝐡 ∈ (tarskiMapβ€˜π΄) ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 ∈ π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430  Vcvv 3472  βˆ© cint 4951  β€˜cfv 6544  Tarskictsk 10747  tarskiMapctskm 10836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-groth 10822
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-er 8707  df-en 8944  df-dom 8945  df-tsk 10748  df-tskm 10837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator