MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltskm Structured version   Visualization version   GIF version

Theorem eltskm 10263
Description: Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
eltskm (𝐴𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem eltskm
StepHypRef Expression
1 tskmval 10259 . . 3 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
21eleq2d 2901 . 2 (𝐴𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ 𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥}))
3 elex 3498 . . . 4 (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} → 𝐵 ∈ V)
43a1i 11 . . 3 (𝐴𝑉 → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} → 𝐵 ∈ V))
5 tskmid 10260 . . . . 5 (𝐴𝑉𝐴 ∈ (tarskiMap‘𝐴))
6 tskmcl 10261 . . . . . 6 (tarskiMap‘𝐴) ∈ Tarski
7 eleq2 2904 . . . . . . . 8 (𝑥 = (tarskiMap‘𝐴) → (𝐴𝑥𝐴 ∈ (tarskiMap‘𝐴)))
8 eleq2 2904 . . . . . . . 8 (𝑥 = (tarskiMap‘𝐴) → (𝐵𝑥𝐵 ∈ (tarskiMap‘𝐴)))
97, 8imbi12d 348 . . . . . . 7 (𝑥 = (tarskiMap‘𝐴) → ((𝐴𝑥𝐵𝑥) ↔ (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))))
109rspcv 3604 . . . . . 6 ((tarskiMap‘𝐴) ∈ Tarski → (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))))
116, 10ax-mp 5 . . . . 5 (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))
125, 11syl5com 31 . . . 4 (𝐴𝑉 → (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → 𝐵 ∈ (tarskiMap‘𝐴)))
13 elex 3498 . . . 4 (𝐵 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ V)
1412, 13syl6 35 . . 3 (𝐴𝑉 → (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → 𝐵 ∈ V))
15 elintrabg 4875 . . . 4 (𝐵 ∈ V → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
1615a1i 11 . . 3 (𝐴𝑉 → (𝐵 ∈ V → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥))))
174, 14, 16pm5.21ndd 384 . 2 (𝐴𝑉 → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
182, 17bitrd 282 1 (𝐴𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2115  wral 3133  {crab 3137  Vcvv 3480   cint 4862  cfv 6343  Tarskictsk 10168  tarskiMapctskm 10257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-groth 10243
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-int 4863  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-er 8285  df-en 8506  df-dom 8507  df-tsk 10169  df-tskm 10258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator