![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltskm | Structured version Visualization version GIF version |
Description: Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
eltskm | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10059 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
2 | 1 | eleq2d 2851 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ 𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥})) |
3 | elex 3433 | . . . 4 ⊢ (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} → 𝐵 ∈ V) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} → 𝐵 ∈ V)) |
5 | tskmid 10060 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) | |
6 | tskmcl 10061 | . . . . . 6 ⊢ (tarskiMap‘𝐴) ∈ Tarski | |
7 | eleq2 2854 | . . . . . . . 8 ⊢ (𝑥 = (tarskiMap‘𝐴) → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ (tarskiMap‘𝐴))) | |
8 | eleq2 2854 | . . . . . . . 8 ⊢ (𝑥 = (tarskiMap‘𝐴) → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ (tarskiMap‘𝐴))) | |
9 | 7, 8 | imbi12d 337 | . . . . . . 7 ⊢ (𝑥 = (tarskiMap‘𝐴) → ((𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) ↔ (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))) |
10 | 9 | rspcv 3531 | . . . . . 6 ⊢ ((tarskiMap‘𝐴) ∈ Tarski → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))) |
11 | 6, 10 | ax-mp 5 | . . . . 5 ⊢ (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))) |
12 | 5, 11 | syl5com 31 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → 𝐵 ∈ (tarskiMap‘𝐴))) |
13 | elex 3433 | . . . 4 ⊢ (𝐵 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ V) | |
14 | 12, 13 | syl6 35 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → 𝐵 ∈ V)) |
15 | elintrabg 4762 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) | |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ V → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥)))) |
17 | 4, 14, 16 | pm5.21ndd 372 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
18 | 2, 17 | bitrd 271 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 ∀wral 3088 {crab 3092 Vcvv 3415 ∩ cint 4749 ‘cfv 6188 Tarskictsk 9968 tarskiMapctskm 10057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-groth 10043 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-int 4750 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-er 8089 df-en 8307 df-dom 8308 df-tsk 9969 df-tskm 10058 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |