| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltskm | Structured version Visualization version GIF version | ||
| Description: Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| eltskm | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tskmval 10722 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
| 2 | 1 | eleq2d 2815 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ 𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥})) |
| 3 | elex 3455 | . . . 4 ⊢ (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} → 𝐵 ∈ V) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} → 𝐵 ∈ V)) |
| 5 | tskmid 10723 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) | |
| 6 | tskmcl 10724 | . . . . . 6 ⊢ (tarskiMap‘𝐴) ∈ Tarski | |
| 7 | eleq2 2818 | . . . . . . . 8 ⊢ (𝑥 = (tarskiMap‘𝐴) → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ (tarskiMap‘𝐴))) | |
| 8 | eleq2 2818 | . . . . . . . 8 ⊢ (𝑥 = (tarskiMap‘𝐴) → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ (tarskiMap‘𝐴))) | |
| 9 | 7, 8 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = (tarskiMap‘𝐴) → ((𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) ↔ (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))) |
| 10 | 9 | rspcv 3571 | . . . . . 6 ⊢ ((tarskiMap‘𝐴) ∈ Tarski → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))) |
| 11 | 6, 10 | ax-mp 5 | . . . . 5 ⊢ (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))) |
| 12 | 5, 11 | syl5com 31 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → 𝐵 ∈ (tarskiMap‘𝐴))) |
| 13 | elex 3455 | . . . 4 ⊢ (𝐵 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ V) | |
| 14 | 12, 13 | syl6 35 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → 𝐵 ∈ V)) |
| 15 | elintrabg 4909 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ V → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥)))) |
| 17 | 4, 14, 16 | pm5.21ndd 379 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
| 18 | 2, 17 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 ∀wral 3045 {crab 3393 Vcvv 3434 ∩ cint 4895 ‘cfv 6477 Tarskictsk 10631 tarskiMapctskm 10720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-groth 10706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-er 8617 df-en 8865 df-dom 8866 df-tsk 10632 df-tskm 10721 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |