![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltskm | Structured version Visualization version GIF version |
Description: Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
eltskm | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10908 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
2 | 1 | eleq2d 2830 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ 𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥})) |
3 | elex 3509 | . . . 4 ⊢ (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} → 𝐵 ∈ V) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} → 𝐵 ∈ V)) |
5 | tskmid 10909 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) | |
6 | tskmcl 10910 | . . . . . 6 ⊢ (tarskiMap‘𝐴) ∈ Tarski | |
7 | eleq2 2833 | . . . . . . . 8 ⊢ (𝑥 = (tarskiMap‘𝐴) → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ (tarskiMap‘𝐴))) | |
8 | eleq2 2833 | . . . . . . . 8 ⊢ (𝑥 = (tarskiMap‘𝐴) → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ (tarskiMap‘𝐴))) | |
9 | 7, 8 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = (tarskiMap‘𝐴) → ((𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) ↔ (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))) |
10 | 9 | rspcv 3631 | . . . . . 6 ⊢ ((tarskiMap‘𝐴) ∈ Tarski → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))) |
11 | 6, 10 | ax-mp 5 | . . . . 5 ⊢ (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))) |
12 | 5, 11 | syl5com 31 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → 𝐵 ∈ (tarskiMap‘𝐴))) |
13 | elex 3509 | . . . 4 ⊢ (𝐵 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ V) | |
14 | 12, 13 | syl6 35 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → 𝐵 ∈ V)) |
15 | elintrabg 4985 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) | |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ V → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥)))) |
17 | 4, 14, 16 | pm5.21ndd 379 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
18 | 2, 17 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 ∩ cint 4970 ‘cfv 6573 Tarskictsk 10817 tarskiMapctskm 10906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-groth 10892 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-tsk 10818 df-tskm 10907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |