MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltskm Structured version   Visualization version   GIF version

Theorem eltskm 10530
Description: Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
eltskm (𝐴𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem eltskm
StepHypRef Expression
1 tskmval 10526 . . 3 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
21eleq2d 2824 . 2 (𝐴𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ 𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥}))
3 elex 3440 . . . 4 (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} → 𝐵 ∈ V)
43a1i 11 . . 3 (𝐴𝑉 → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} → 𝐵 ∈ V))
5 tskmid 10527 . . . . 5 (𝐴𝑉𝐴 ∈ (tarskiMap‘𝐴))
6 tskmcl 10528 . . . . . 6 (tarskiMap‘𝐴) ∈ Tarski
7 eleq2 2827 . . . . . . . 8 (𝑥 = (tarskiMap‘𝐴) → (𝐴𝑥𝐴 ∈ (tarskiMap‘𝐴)))
8 eleq2 2827 . . . . . . . 8 (𝑥 = (tarskiMap‘𝐴) → (𝐵𝑥𝐵 ∈ (tarskiMap‘𝐴)))
97, 8imbi12d 344 . . . . . . 7 (𝑥 = (tarskiMap‘𝐴) → ((𝐴𝑥𝐵𝑥) ↔ (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))))
109rspcv 3547 . . . . . 6 ((tarskiMap‘𝐴) ∈ Tarski → (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))))
116, 10ax-mp 5 . . . . 5 (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))
125, 11syl5com 31 . . . 4 (𝐴𝑉 → (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → 𝐵 ∈ (tarskiMap‘𝐴)))
13 elex 3440 . . . 4 (𝐵 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ V)
1412, 13syl6 35 . . 3 (𝐴𝑉 → (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) → 𝐵 ∈ V))
15 elintrabg 4889 . . . 4 (𝐵 ∈ V → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
1615a1i 11 . . 3 (𝐴𝑉 → (𝐵 ∈ V → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥))))
174, 14, 16pm5.21ndd 380 . 2 (𝐴𝑉 → (𝐵 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
182, 17bitrd 278 1 (𝐴𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422   cint 4876  cfv 6418  Tarskictsk 10435  tarskiMapctskm 10524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-groth 10510
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-tsk 10436  df-tskm 10525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator