Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eltskm | Structured version Visualization version GIF version |
Description: Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
eltskm | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10595 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ 𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥})) |
3 | elex 3450 | . . . 4 ⊢ (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} → 𝐵 ∈ V) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} → 𝐵 ∈ V)) |
5 | tskmid 10596 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) | |
6 | tskmcl 10597 | . . . . . 6 ⊢ (tarskiMap‘𝐴) ∈ Tarski | |
7 | eleq2 2827 | . . . . . . . 8 ⊢ (𝑥 = (tarskiMap‘𝐴) → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ (tarskiMap‘𝐴))) | |
8 | eleq2 2827 | . . . . . . . 8 ⊢ (𝑥 = (tarskiMap‘𝐴) → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ (tarskiMap‘𝐴))) | |
9 | 7, 8 | imbi12d 345 | . . . . . . 7 ⊢ (𝑥 = (tarskiMap‘𝐴) → ((𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) ↔ (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))) |
10 | 9 | rspcv 3557 | . . . . . 6 ⊢ ((tarskiMap‘𝐴) ∈ Tarski → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))) |
11 | 6, 10 | ax-mp 5 | . . . . 5 ⊢ (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))) |
12 | 5, 11 | syl5com 31 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → 𝐵 ∈ (tarskiMap‘𝐴))) |
13 | elex 3450 | . . . 4 ⊢ (𝐵 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ V) | |
14 | 12, 13 | syl6 35 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → 𝐵 ∈ V)) |
15 | elintrabg 4892 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) | |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ V → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥)))) |
17 | 4, 14, 16 | pm5.21ndd 381 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
18 | 2, 17 | bitrd 278 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 ∩ cint 4879 ‘cfv 6433 Tarskictsk 10504 tarskiMapctskm 10593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-groth 10579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-tsk 10505 df-tskm 10594 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |