Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelvalN | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dicval.l | ⊢ ≤ = (le‘𝐾) |
dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dicelvalN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | dicval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicval.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
5 | dicval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | dicval.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
7 | dicval.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dicval 38745 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)}) |
9 | 8 | eleq2d 2838 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ 𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})) |
10 | vex 3414 | . . . . . 6 ⊢ 𝑓 ∈ V | |
11 | vex 3414 | . . . . . 6 ⊢ 𝑠 ∈ V | |
12 | 10, 11 | op1std 7704 | . . . . 5 ⊢ (𝑌 = 〈𝑓, 𝑠〉 → (1st ‘𝑌) = 𝑓) |
13 | 10, 11 | op2ndd 7705 | . . . . . 6 ⊢ (𝑌 = 〈𝑓, 𝑠〉 → (2nd ‘𝑌) = 𝑠) |
14 | 13 | fveq1d 6661 | . . . . 5 ⊢ (𝑌 = 〈𝑓, 𝑠〉 → ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) |
15 | 12, 14 | eqeq12d 2775 | . . . 4 ⊢ (𝑌 = 〈𝑓, 𝑠〉 → ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ↔ 𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)))) |
16 | 13 | eleq1d 2837 | . . . 4 ⊢ (𝑌 = 〈𝑓, 𝑠〉 → ((2nd ‘𝑌) ∈ 𝐸 ↔ 𝑠 ∈ 𝐸)) |
17 | 15, 16 | anbi12d 634 | . . 3 ⊢ (𝑌 = 〈𝑓, 𝑠〉 → (((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸) ↔ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸))) |
18 | 17 | elopaba 5651 | . 2 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)} ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸))) |
19 | 9, 18 | syl6bb 291 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 〈cop 4529 class class class wbr 5033 {copab 5095 × cxp 5523 ‘cfv 6336 ℩crio 7108 1st c1st 7692 2nd c2nd 7693 lecple 16623 occoc 16624 Atomscatm 36832 LHypclh 37553 LTrncltrn 37670 TEndoctendo 38321 DIsoCcdic 38741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-1st 7694 df-2nd 7695 df-dic 38742 |
This theorem is referenced by: dicelval2N 38751 |
Copyright terms: Public domain | W3C validator |