![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelvalN | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism C for a lattice πΎ. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dicval.l | β’ β€ = (leβπΎ) |
dicval.a | β’ π΄ = (AtomsβπΎ) |
dicval.h | β’ π» = (LHypβπΎ) |
dicval.p | β’ π = ((ocβπΎ)βπ) |
dicval.t | β’ π = ((LTrnβπΎ)βπ) |
dicval.e | β’ πΈ = ((TEndoβπΎ)βπ) |
dicval.i | β’ πΌ = ((DIsoCβπΎ)βπ) |
Ref | Expression |
---|---|
dicelvalN | β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β (π β (V Γ V) β§ ((1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β πΈ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicval.l | . . . 4 β’ β€ = (leβπΎ) | |
2 | dicval.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
3 | dicval.h | . . . 4 β’ π» = (LHypβπΎ) | |
4 | dicval.p | . . . 4 β’ π = ((ocβπΎ)βπ) | |
5 | dicval.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
6 | dicval.e | . . . 4 β’ πΈ = ((TEndoβπΎ)βπ) | |
7 | dicval.i | . . . 4 β’ πΌ = ((DIsoCβπΎ)βπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dicval 40503 | . . 3 β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β πΈ)}) |
9 | 8 | eleq2d 2811 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β π β {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β πΈ)})) |
10 | vex 3470 | . . . . . 6 β’ π β V | |
11 | vex 3470 | . . . . . 6 β’ π β V | |
12 | 10, 11 | op1std 7978 | . . . . 5 β’ (π = β¨π, π β© β (1st βπ) = π) |
13 | 10, 11 | op2ndd 7979 | . . . . . 6 β’ (π = β¨π, π β© β (2nd βπ) = π ) |
14 | 13 | fveq1d 6883 | . . . . 5 β’ (π = β¨π, π β© β ((2nd βπ)β(β©π β π (πβπ) = π)) = (π β(β©π β π (πβπ) = π))) |
15 | 12, 14 | eqeq12d 2740 | . . . 4 β’ (π = β¨π, π β© β ((1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π)) β π = (π β(β©π β π (πβπ) = π)))) |
16 | 13 | eleq1d 2810 | . . . 4 β’ (π = β¨π, π β© β ((2nd βπ) β πΈ β π β πΈ)) |
17 | 15, 16 | anbi12d 630 | . . 3 β’ (π = β¨π, π β© β (((1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β πΈ) β (π = (π β(β©π β π (πβπ) = π)) β§ π β πΈ))) |
18 | 17 | elopaba 5798 | . 2 β’ (π β {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β πΈ)} β (π β (V Γ V) β§ ((1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β πΈ))) |
19 | 9, 18 | bitrdi 287 | 1 β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β (π β (V Γ V) β§ ((1st βπ) = ((2nd βπ)β(β©π β π (πβπ) = π)) β§ (2nd βπ) β πΈ)))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3466 β¨cop 4626 class class class wbr 5138 {copab 5200 Γ cxp 5664 βcfv 6533 β©crio 7356 1st c1st 7966 2nd c2nd 7967 lecple 17202 occoc 17203 Atomscatm 38589 LHypclh 39311 LTrncltrn 39428 TEndoctendo 40079 DIsoCcdic 40499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-1st 7968 df-2nd 7969 df-dic 40500 |
This theorem is referenced by: dicelval2N 40509 |
Copyright terms: Public domain | W3C validator |