| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version | ||
| Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | olci 866 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
| 3 | elsucg 6381 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 suc csuc 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-suc 6317 |
| This theorem is referenced by: sucid 6395 nsuceq0 6396 trsuc 6400 sucssel 6408 ordsuc 7752 ordsucOLD 7753 onpsssuc 7758 nlimsucg 7782 tfrlem11 8317 tfrlem13 8319 tz7.44-2 8336 omeulem1 8507 oeordi 8512 oeeulem 8526 dif1enlem 9080 dif1enlemOLD 9081 rexdif1en 9082 rexdif1enOLD 9083 dif1en 9084 dif1enOLD 9086 php4 9134 wofib 9456 suc11reg 9534 cantnfle 9586 cantnflt2 9588 cantnfp1lem3 9595 cantnflem1 9604 dfac12lem1 10057 dfac12lem2 10058 ttukeylem3 10424 ttukeylem7 10428 r1wunlim 10650 noresle 27625 nosupprefixmo 27628 noinfprefixmo 27629 fmla 35353 ex-sategoelelomsuc 35398 ontgval 36404 sucneqond 37338 finxpreclem4 37367 finxpsuclem 37370 onexgt 43213 onepsuc 43225 ordnexbtwnsuc 43240 nlimsuc 43414 sucomisnotcard 43517 |
| Copyright terms: Public domain | W3C validator |