| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version | ||
| Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | olci 866 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
| 3 | elsucg 6405 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-sn 4593 df-suc 6341 |
| This theorem is referenced by: sucid 6419 nsuceq0 6420 trsuc 6424 sucssel 6432 ordsuc 7791 ordsucOLD 7792 onpsssuc 7797 nlimsucg 7821 tfrlem11 8359 tfrlem13 8361 tz7.44-2 8378 omeulem1 8549 oeordi 8554 oeeulem 8568 dif1enlem 9126 dif1enlemOLD 9127 rexdif1en 9128 rexdif1enOLD 9129 dif1en 9130 dif1enOLD 9132 php4 9180 wofib 9505 suc11reg 9579 cantnfle 9631 cantnflt2 9633 cantnfp1lem3 9640 cantnflem1 9649 dfac12lem1 10104 dfac12lem2 10105 ttukeylem3 10471 ttukeylem7 10475 r1wunlim 10697 noresle 27616 nosupprefixmo 27619 noinfprefixmo 27620 fmla 35375 ex-sategoelelomsuc 35420 ontgval 36426 sucneqond 37360 finxpreclem4 37389 finxpsuclem 37392 onexgt 43236 onepsuc 43248 ordnexbtwnsuc 43263 nlimsuc 43437 sucomisnotcard 43540 |
| Copyright terms: Public domain | W3C validator |