Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version |
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 862 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
3 | elsucg 6330 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1541 ∈ wcel 2109 suc csuc 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-un 3896 df-sn 4567 df-suc 6269 |
This theorem is referenced by: sucid 6342 nsuceq0 6343 trsuc 6347 sucssel 6355 ordsuc 7649 onpsssuc 7654 nlimsucg 7677 tfrlem11 8203 tfrlem13 8205 tz7.44-2 8222 omeulem1 8389 oeordi 8394 oeeulem 8408 dif1enlem 8908 rexdif1en 8909 dif1en 8910 php4 8960 wofib 9265 suc11reg 9338 cantnfle 9390 cantnflt2 9392 cantnfp1lem3 9399 cantnflem1 9408 dfac12lem1 9883 dfac12lem2 9884 ttukeylem3 10251 ttukeylem7 10255 r1wunlim 10477 fmla 33322 ex-sategoelelomsuc 33367 noresle 33879 nosupprefixmo 33882 noinfprefixmo 33883 ontgval 34599 sucneqond 35515 finxpreclem4 35544 finxpsuclem 35547 |
Copyright terms: Public domain | W3C validator |