| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version | ||
| Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | olci 866 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
| 3 | elsucg 6376 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-suc 6312 |
| This theorem is referenced by: sucid 6390 nsuceq0 6391 trsuc 6395 sucssel 6403 ordsuc 7744 onpsssuc 7749 nlimsucg 7772 tfrlem11 8307 tfrlem13 8309 tz7.44-2 8326 omeulem1 8497 oeordi 8502 oeeulem 8516 dif1enlem 9069 rexdif1en 9070 dif1en 9071 php4 9119 wofib 9431 suc11reg 9509 cantnfle 9561 cantnflt2 9563 cantnfp1lem3 9570 cantnflem1 9579 dfac12lem1 10035 dfac12lem2 10036 ttukeylem3 10402 ttukeylem7 10406 r1wunlim 10628 noresle 27637 nosupprefixmo 27640 noinfprefixmo 27641 fmla 35423 ex-sategoelelomsuc 35468 ontgval 36471 sucneqond 37405 finxpreclem4 37434 finxpsuclem 37437 onexgt 43279 onepsuc 43291 ordnexbtwnsuc 43306 nlimsuc 43480 sucomisnotcard 43583 |
| Copyright terms: Public domain | W3C validator |