| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version | ||
| Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | olci 866 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
| 3 | elsucg 6384 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4578 df-suc 6320 |
| This theorem is referenced by: sucid 6398 nsuceq0 6399 trsuc 6403 sucssel 6411 ordsuc 7753 onpsssuc 7758 nlimsucg 7781 tfrlem11 8316 tfrlem13 8318 tz7.44-2 8335 omeulem1 8506 oeordi 8511 oeeulem 8525 dif1enlem 9080 rexdif1en 9081 dif1en 9082 php4 9130 wofib 9442 suc11reg 9520 cantnfle 9572 cantnflt2 9574 cantnfp1lem3 9581 cantnflem1 9590 dfac12lem1 10046 dfac12lem2 10047 ttukeylem3 10413 ttukeylem7 10417 r1wunlim 10639 noresle 27656 nosupprefixmo 27659 noinfprefixmo 27660 fmla 35497 ex-sategoelelomsuc 35542 ontgval 36547 sucneqond 37482 finxpreclem4 37511 finxpsuclem 37514 dfsuccl4 38560 onexgt 43397 onepsuc 43409 ordnexbtwnsuc 43424 nlimsuc 43598 sucomisnotcard 43701 |
| Copyright terms: Public domain | W3C validator |