![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version |
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 865 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
3 | elsucg 6463 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-suc 6401 |
This theorem is referenced by: sucid 6477 nsuceq0 6478 trsuc 6482 sucssel 6490 ordsuc 7849 ordsucOLD 7850 onpsssuc 7855 nlimsucg 7879 tfrlem11 8444 tfrlem13 8446 tz7.44-2 8463 omeulem1 8638 oeordi 8643 oeeulem 8657 dif1enlem 9222 dif1enlemOLD 9223 rexdif1en 9224 rexdif1enOLD 9225 dif1en 9226 dif1enOLD 9228 php4 9276 wofib 9614 suc11reg 9688 cantnfle 9740 cantnflt2 9742 cantnfp1lem3 9749 cantnflem1 9758 dfac12lem1 10213 dfac12lem2 10214 ttukeylem3 10580 ttukeylem7 10584 r1wunlim 10806 noresle 27760 nosupprefixmo 27763 noinfprefixmo 27764 fmla 35349 ex-sategoelelomsuc 35394 ontgval 36397 sucneqond 37331 finxpreclem4 37360 finxpsuclem 37363 onexgt 43201 onepsuc 43213 ordnexbtwnsuc 43229 nlimsuc 43403 sucomisnotcard 43506 |
Copyright terms: Public domain | W3C validator |