![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version |
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 864 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
3 | elsucg 6432 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1541 ∈ wcel 2106 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3953 df-sn 4629 df-suc 6370 |
This theorem is referenced by: sucid 6446 nsuceq0 6447 trsuc 6451 sucssel 6459 ordsuc 7803 ordsucOLD 7804 onpsssuc 7809 nlimsucg 7833 tfrlem11 8390 tfrlem13 8392 tz7.44-2 8409 omeulem1 8584 oeordi 8589 oeeulem 8603 dif1enlem 9158 dif1enlemOLD 9159 rexdif1en 9160 rexdif1enOLD 9161 dif1en 9162 dif1enOLD 9164 php4 9215 wofib 9542 suc11reg 9616 cantnfle 9668 cantnflt2 9670 cantnfp1lem3 9677 cantnflem1 9686 dfac12lem1 10140 dfac12lem2 10141 ttukeylem3 10508 ttukeylem7 10512 r1wunlim 10734 noresle 27424 nosupprefixmo 27427 noinfprefixmo 27428 fmla 34658 ex-sategoelelomsuc 34703 ontgval 35619 sucneqond 36549 finxpreclem4 36578 finxpsuclem 36581 onexgt 42291 onepsuc 42303 ordnexbtwnsuc 42319 nlimsuc 42494 sucomisnotcard 42597 |
Copyright terms: Public domain | W3C validator |