| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version | ||
| Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | olci 866 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
| 3 | elsucg 6402 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-suc 6338 |
| This theorem is referenced by: sucid 6416 nsuceq0 6417 trsuc 6421 sucssel 6429 ordsuc 7788 ordsucOLD 7789 onpsssuc 7794 nlimsucg 7818 tfrlem11 8356 tfrlem13 8358 tz7.44-2 8375 omeulem1 8546 oeordi 8551 oeeulem 8565 dif1enlem 9120 dif1enlemOLD 9121 rexdif1en 9122 rexdif1enOLD 9123 dif1en 9124 dif1enOLD 9126 php4 9174 wofib 9498 suc11reg 9572 cantnfle 9624 cantnflt2 9626 cantnfp1lem3 9633 cantnflem1 9642 dfac12lem1 10097 dfac12lem2 10098 ttukeylem3 10464 ttukeylem7 10468 r1wunlim 10690 noresle 27609 nosupprefixmo 27612 noinfprefixmo 27613 fmla 35368 ex-sategoelelomsuc 35413 ontgval 36419 sucneqond 37353 finxpreclem4 37382 finxpsuclem 37385 onexgt 43229 onepsuc 43241 ordnexbtwnsuc 43256 nlimsuc 43430 sucomisnotcard 43533 |
| Copyright terms: Public domain | W3C validator |