![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version |
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2780 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 853 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
3 | elsucg 6101 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 250 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 834 = wceq 1508 ∈ wcel 2051 suc csuc 6036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2752 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-v 3419 df-un 3836 df-sn 4445 df-suc 6040 |
This theorem is referenced by: sucid 6113 nsuceq0 6114 trsuc 6118 sucssel 6126 ordsuc 7351 onpsssuc 7356 nlimsucg 7379 tfrlem11 7834 tfrlem13 7836 tz7.44-2 7853 omeulem1 8015 oeordi 8020 oeeulem 8034 php4 8506 wofib 8810 suc11reg 8882 cantnfle 8934 cantnflt2 8936 cantnfp1lem3 8943 cantnflem1 8952 dfac12lem1 9369 dfac12lem2 9370 ttukeylem3 9737 ttukeylem7 9741 r1wunlim 9963 fmla 32231 noresle 32761 noprefixmo 32763 ontgval 33339 sucneqond 34128 finxpreclem4 34156 finxpsuclem 34159 |
Copyright terms: Public domain | W3C validator |