| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version | ||
| Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). Lemma 1.7 of [Schloeder] p. 1. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | olci 866 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
| 3 | elsucg 6422 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2108 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-suc 6358 |
| This theorem is referenced by: sucid 6436 nsuceq0 6437 trsuc 6441 sucssel 6449 ordsuc 7807 ordsucOLD 7808 onpsssuc 7813 nlimsucg 7837 tfrlem11 8402 tfrlem13 8404 tz7.44-2 8421 omeulem1 8594 oeordi 8599 oeeulem 8613 dif1enlem 9170 dif1enlemOLD 9171 rexdif1en 9172 rexdif1enOLD 9173 dif1en 9174 dif1enOLD 9176 php4 9224 wofib 9559 suc11reg 9633 cantnfle 9685 cantnflt2 9687 cantnfp1lem3 9694 cantnflem1 9703 dfac12lem1 10158 dfac12lem2 10159 ttukeylem3 10525 ttukeylem7 10529 r1wunlim 10751 noresle 27661 nosupprefixmo 27664 noinfprefixmo 27665 fmla 35403 ex-sategoelelomsuc 35448 ontgval 36449 sucneqond 37383 finxpreclem4 37412 finxpsuclem 37415 onexgt 43264 onepsuc 43276 ordnexbtwnsuc 43291 nlimsuc 43465 sucomisnotcard 43568 |
| Copyright terms: Public domain | W3C validator |