Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version |
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 863 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
3 | elsucg 6333 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1539 ∈ wcel 2106 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-suc 6272 |
This theorem is referenced by: sucid 6345 nsuceq0 6346 trsuc 6350 sucssel 6358 ordsuc 7661 onpsssuc 7666 nlimsucg 7689 tfrlem11 8219 tfrlem13 8221 tz7.44-2 8238 omeulem1 8413 oeordi 8418 oeeulem 8432 dif1enlem 8943 rexdif1en 8944 dif1en 8945 php4 8996 wofib 9304 suc11reg 9377 cantnfle 9429 cantnflt2 9431 cantnfp1lem3 9438 cantnflem1 9447 dfac12lem1 9899 dfac12lem2 9900 ttukeylem3 10267 ttukeylem7 10271 r1wunlim 10493 fmla 33343 ex-sategoelelomsuc 33388 noresle 33900 nosupprefixmo 33903 noinfprefixmo 33904 ontgval 34620 sucneqond 35536 finxpreclem4 35565 finxpsuclem 35568 nlimsuc 41048 sucomisnotcard 41151 |
Copyright terms: Public domain | W3C validator |