Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucidg | Structured version Visualization version GIF version |
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 862 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
3 | elsucg 6318 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-suc 6257 |
This theorem is referenced by: sucid 6330 nsuceq0 6331 trsuc 6335 sucssel 6343 ordsuc 7636 onpsssuc 7641 nlimsucg 7664 tfrlem11 8190 tfrlem13 8192 tz7.44-2 8209 omeulem1 8375 oeordi 8380 oeeulem 8394 php4 8900 dif1enlem 8905 rexdif1en 8906 dif1en 8907 wofib 9234 suc11reg 9307 cantnfle 9359 cantnflt2 9361 cantnfp1lem3 9368 cantnflem1 9377 dfac12lem1 9830 dfac12lem2 9831 ttukeylem3 10198 ttukeylem7 10202 r1wunlim 10424 fmla 33243 ex-sategoelelomsuc 33288 noresle 33827 nosupprefixmo 33830 noinfprefixmo 33831 ontgval 34547 sucneqond 35463 finxpreclem4 35492 finxpsuclem 35495 |
Copyright terms: Public domain | W3C validator |