Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enp1ilem | Structured version Visualization version GIF version |
Description: Lemma for uses of enp1i 9052. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
enp1ilem.1 | ⊢ 𝑇 = ({𝑥} ∪ 𝑆) |
Ref | Expression |
---|---|
enp1ilem | ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4090 | . . 3 ⊢ ((𝐴 ∖ {𝑥}) = 𝑆 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝑆 ∪ {𝑥})) | |
2 | undif1 4409 | . . 3 ⊢ ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥}) | |
3 | uncom 4087 | . . . 4 ⊢ (𝑆 ∪ {𝑥}) = ({𝑥} ∪ 𝑆) | |
4 | enp1ilem.1 | . . . 4 ⊢ 𝑇 = ({𝑥} ∪ 𝑆) | |
5 | 3, 4 | eqtr4i 2769 | . . 3 ⊢ (𝑆 ∪ {𝑥}) = 𝑇 |
6 | 1, 2, 5 | 3eqtr3g 2801 | . 2 ⊢ ((𝐴 ∖ {𝑥}) = 𝑆 → (𝐴 ∪ {𝑥}) = 𝑇) |
7 | snssi 4741 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
8 | ssequn2 4117 | . . . 4 ⊢ ({𝑥} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑥}) = 𝐴) | |
9 | 7, 8 | sylib 217 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐴 ∪ {𝑥}) = 𝐴) |
10 | 9 | eqeq1d 2740 | . 2 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∪ {𝑥}) = 𝑇 ↔ 𝐴 = 𝑇)) |
11 | 6, 10 | syl5ib 243 | 1 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 |
This theorem is referenced by: en2 9053 en3 9054 en4 9055 |
Copyright terms: Public domain | W3C validator |