![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enp1ilem | Structured version Visualization version GIF version |
Description: Lemma for uses of enp1i 9341. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
enp1ilem.1 | ⊢ 𝑇 = ({𝑥} ∪ 𝑆) |
Ref | Expression |
---|---|
enp1ilem | ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4184 | . . 3 ⊢ ((𝐴 ∖ {𝑥}) = 𝑆 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝑆 ∪ {𝑥})) | |
2 | undif1 4499 | . . 3 ⊢ ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥}) | |
3 | uncom 4181 | . . . 4 ⊢ (𝑆 ∪ {𝑥}) = ({𝑥} ∪ 𝑆) | |
4 | enp1ilem.1 | . . . 4 ⊢ 𝑇 = ({𝑥} ∪ 𝑆) | |
5 | 3, 4 | eqtr4i 2771 | . . 3 ⊢ (𝑆 ∪ {𝑥}) = 𝑇 |
6 | 1, 2, 5 | 3eqtr3g 2803 | . 2 ⊢ ((𝐴 ∖ {𝑥}) = 𝑆 → (𝐴 ∪ {𝑥}) = 𝑇) |
7 | snssi 4833 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
8 | ssequn2 4212 | . . . 4 ⊢ ({𝑥} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑥}) = 𝐴) | |
9 | 7, 8 | sylib 218 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐴 ∪ {𝑥}) = 𝐴) |
10 | 9 | eqeq1d 2742 | . 2 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∪ {𝑥}) = 𝑇 ↔ 𝐴 = 𝑇)) |
11 | 6, 10 | imbitrid 244 | 1 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-sn 4649 |
This theorem is referenced by: en2 9343 en3 9344 en4 9345 |
Copyright terms: Public domain | W3C validator |