MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enp1ilem Structured version   Visualization version   GIF version

Theorem enp1ilem 9294
Description: Lemma for uses of enp1i 9295. (Contributed by Mario Carneiro, 5-Jan-2016.)
Hypothesis
Ref Expression
enp1ilem.1 𝑇 = ({𝑥} ∪ 𝑆)
Assertion
Ref Expression
enp1ilem (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆𝐴 = 𝑇))

Proof of Theorem enp1ilem
StepHypRef Expression
1 uneq1 4141 . . 3 ((𝐴 ∖ {𝑥}) = 𝑆 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝑆 ∪ {𝑥}))
2 undif1 4456 . . 3 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥})
3 uncom 4138 . . . 4 (𝑆 ∪ {𝑥}) = ({𝑥} ∪ 𝑆)
4 enp1ilem.1 . . . 4 𝑇 = ({𝑥} ∪ 𝑆)
53, 4eqtr4i 2760 . . 3 (𝑆 ∪ {𝑥}) = 𝑇
61, 2, 53eqtr3g 2792 . 2 ((𝐴 ∖ {𝑥}) = 𝑆 → (𝐴 ∪ {𝑥}) = 𝑇)
7 snssi 4788 . . . 4 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
8 ssequn2 4169 . . . 4 ({𝑥} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑥}) = 𝐴)
97, 8sylib 218 . . 3 (𝑥𝐴 → (𝐴 ∪ {𝑥}) = 𝐴)
109eqeq1d 2736 . 2 (𝑥𝐴 → ((𝐴 ∪ {𝑥}) = 𝑇𝐴 = 𝑇))
116, 10imbitrid 244 1 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆𝐴 = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cdif 3928  cun 3929  wss 3931  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-sn 4607
This theorem is referenced by:  en2  9297  en3  9298  en4  9299
  Copyright terms: Public domain W3C validator