MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enp1ilem Structured version   Visualization version   GIF version

Theorem enp1ilem 8822
Description: Lemma for uses of enp1i 8823. (Contributed by Mario Carneiro, 5-Jan-2016.)
Hypothesis
Ref Expression
enp1ilem.1 𝑇 = ({𝑥} ∪ 𝑆)
Assertion
Ref Expression
enp1ilem (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆𝐴 = 𝑇))

Proof of Theorem enp1ilem
StepHypRef Expression
1 uneq1 4044 . . 3 ((𝐴 ∖ {𝑥}) = 𝑆 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝑆 ∪ {𝑥}))
2 undif1 4362 . . 3 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥})
3 uncom 4041 . . . 4 (𝑆 ∪ {𝑥}) = ({𝑥} ∪ 𝑆)
4 enp1ilem.1 . . . 4 𝑇 = ({𝑥} ∪ 𝑆)
53, 4eqtr4i 2764 . . 3 (𝑆 ∪ {𝑥}) = 𝑇
61, 2, 53eqtr3g 2796 . 2 ((𝐴 ∖ {𝑥}) = 𝑆 → (𝐴 ∪ {𝑥}) = 𝑇)
7 snssi 4693 . . . 4 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
8 ssequn2 4071 . . . 4 ({𝑥} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑥}) = 𝐴)
97, 8sylib 221 . . 3 (𝑥𝐴 → (𝐴 ∪ {𝑥}) = 𝐴)
109eqeq1d 2740 . 2 (𝑥𝐴 → ((𝐴 ∪ {𝑥}) = 𝑇𝐴 = 𝑇))
116, 10syl5ib 247 1 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆𝐴 = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  cdif 3838  cun 3839  wss 3841  {csn 4513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-rab 3062  df-v 3399  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-sn 4514
This theorem is referenced by:  en2  8824  en3  8825  en4  8826
  Copyright terms: Public domain W3C validator