Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en2 | Structured version Visualization version GIF version |
Description: A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
en2 | ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8380 | . . 3 ⊢ 1o ∈ On | |
2 | 1 | onordi 6412 | . 2 ⊢ Ord 1o |
3 | df-2o 8369 | . 2 ⊢ 2o = suc 1o | |
4 | en1 8887 | . . 3 ⊢ ((𝐴 ∖ {𝑥}) ≈ 1o ↔ ∃𝑦(𝐴 ∖ {𝑥}) = {𝑦}) | |
5 | 4 | biimpi 215 | . 2 ⊢ ((𝐴 ∖ {𝑥}) ≈ 1o → ∃𝑦(𝐴 ∖ {𝑥}) = {𝑦}) |
6 | df-pr 4577 | . . . 4 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
7 | 6 | enp1ilem 9144 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦} → 𝐴 = {𝑥, 𝑦})) |
8 | 7 | eximdv 1919 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦(𝐴 ∖ {𝑥}) = {𝑦} → ∃𝑦 𝐴 = {𝑥, 𝑦})) |
9 | 2, 3, 5, 8 | enp1i 9145 | 1 ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∖ cdif 3895 {csn 4574 {cpr 4576 class class class wbr 5093 1oc1o 8361 2oc2o 8362 ≈ cen 8802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6306 df-on 6307 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-1o 8368 df-2o 8369 df-en 8806 |
This theorem is referenced by: en3 9148 hash2pr 14284 pmtrrn2 19165 trsp2cyc 31677 en2pr 41528 pr2cv 41529 |
Copyright terms: Public domain | W3C validator |