| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2 | Structured version Visualization version GIF version | ||
| Description: A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| en2 | ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8403 | . . 3 ⊢ 1o ∈ On | |
| 2 | 1 | onordi 6424 | . 2 ⊢ Ord 1o |
| 3 | df-2o 8392 | . 2 ⊢ 2o = suc 1o | |
| 4 | en1 8953 | . . 3 ⊢ ((𝐴 ∖ {𝑥}) ≈ 1o ↔ ∃𝑦(𝐴 ∖ {𝑥}) = {𝑦}) | |
| 5 | 4 | biimpi 216 | . 2 ⊢ ((𝐴 ∖ {𝑥}) ≈ 1o → ∃𝑦(𝐴 ∖ {𝑥}) = {𝑦}) |
| 6 | df-pr 4578 | . . . 4 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
| 7 | 6 | enp1ilem 9169 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦} → 𝐴 = {𝑥, 𝑦})) |
| 8 | 7 | eximdv 1918 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦(𝐴 ∖ {𝑥}) = {𝑦} → ∃𝑦 𝐴 = {𝑥, 𝑦})) |
| 9 | 2, 3, 5, 8 | enp1i 9170 | 1 ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∖ cdif 3895 {csn 4575 {cpr 4577 class class class wbr 5093 1oc1o 8384 2oc2o 8385 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-1o 8391 df-2o 8392 df-en 8876 |
| This theorem is referenced by: en3 9172 hash2pr 14378 pmtrrn2 19374 trsp2cyc 33099 en2pr 43664 pr2cv 43665 |
| Copyright terms: Public domain | W3C validator |