MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2 Structured version   Visualization version   GIF version

Theorem en2 8738
Description: A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en2 (𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem en2
StepHypRef Expression
1 1onn 8248 . 2 1o ∈ ω
2 df-2o 8086 . 2 2o = suc 1o
3 en1 8559 . . 3 ((𝐴 ∖ {𝑥}) ≈ 1o ↔ ∃𝑦(𝐴 ∖ {𝑥}) = {𝑦})
43biimpi 219 . 2 ((𝐴 ∖ {𝑥}) ≈ 1o → ∃𝑦(𝐴 ∖ {𝑥}) = {𝑦})
5 df-pr 4528 . . . 4 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
65enp1ilem 8736 . . 3 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦} → 𝐴 = {𝑥, 𝑦}))
76eximdv 1918 . 2 (𝑥𝐴 → (∃𝑦(𝐴 ∖ {𝑥}) = {𝑦} → ∃𝑦 𝐴 = {𝑥, 𝑦}))
81, 2, 4, 7enp1i 8737 1 (𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wex 1781  wcel 2111  cdif 3878  {csn 4525  {cpr 4527   class class class wbr 5030  1oc1o 8078  2oc2o 8079  cen 8489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-fin 8496
This theorem is referenced by:  en3  8739  hash2pr  13823  pmtrrn2  18580  trsp2cyc  30815  en2pr  40246  pr2cv  40247
  Copyright terms: Public domain W3C validator