| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2 | Structured version Visualization version GIF version | ||
| Description: A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| en2 | ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8397 | . . 3 ⊢ 1o ∈ On | |
| 2 | 1 | onordi 6419 | . 2 ⊢ Ord 1o |
| 3 | df-2o 8386 | . 2 ⊢ 2o = suc 1o | |
| 4 | en1 8946 | . . 3 ⊢ ((𝐴 ∖ {𝑥}) ≈ 1o ↔ ∃𝑦(𝐴 ∖ {𝑥}) = {𝑦}) | |
| 5 | 4 | biimpi 216 | . 2 ⊢ ((𝐴 ∖ {𝑥}) ≈ 1o → ∃𝑦(𝐴 ∖ {𝑥}) = {𝑦}) |
| 6 | df-pr 4579 | . . . 4 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
| 7 | 6 | enp1ilem 9162 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦} → 𝐴 = {𝑥, 𝑦})) |
| 8 | 7 | eximdv 1918 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦(𝐴 ∖ {𝑥}) = {𝑦} → ∃𝑦 𝐴 = {𝑥, 𝑦})) |
| 9 | 2, 3, 5, 8 | enp1i 9163 | 1 ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∖ cdif 3899 {csn 4576 {cpr 4578 class class class wbr 5091 1oc1o 8378 2oc2o 8379 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1o 8385 df-2o 8386 df-en 8870 |
| This theorem is referenced by: en3 9165 hash2pr 14373 pmtrrn2 19370 trsp2cyc 33087 en2pr 43579 pr2cv 43580 |
| Copyright terms: Public domain | W3C validator |