Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en2 | Structured version Visualization version GIF version |
Description: A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
en2 | ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8446 | . 2 ⊢ 1o ∈ ω | |
2 | df-2o 8282 | . 2 ⊢ 2o = suc 1o | |
3 | en1 8781 | . . 3 ⊢ ((𝐴 ∖ {𝑥}) ≈ 1o ↔ ∃𝑦(𝐴 ∖ {𝑥}) = {𝑦}) | |
4 | 3 | biimpi 215 | . 2 ⊢ ((𝐴 ∖ {𝑥}) ≈ 1o → ∃𝑦(𝐴 ∖ {𝑥}) = {𝑦}) |
5 | df-pr 4569 | . . . 4 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
6 | 5 | enp1ilem 9012 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦} → 𝐴 = {𝑥, 𝑦})) |
7 | 6 | eximdv 1923 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦(𝐴 ∖ {𝑥}) = {𝑦} → ∃𝑦 𝐴 = {𝑥, 𝑦})) |
8 | 1, 2, 4, 7 | enp1i 9013 | 1 ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∃wex 1785 ∈ wcel 2109 ∖ cdif 3888 {csn 4566 {cpr 4568 class class class wbr 5078 1oc1o 8274 2oc2o 8275 ≈ cen 8704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-om 7701 df-1o 8281 df-2o 8282 df-er 8472 df-en 8708 |
This theorem is referenced by: en3 9015 hash2pr 14164 pmtrrn2 19049 trsp2cyc 31369 en2pr 41107 pr2cv 41108 |
Copyright terms: Public domain | W3C validator |