| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enp1i | Structured version Visualization version GIF version | ||
| Description: Proof induction for en2 9169 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5304, ax-un 7671. (Revised by BTernaryTau, 6-Jan-2025.) |
| Ref | Expression |
|---|---|
| enp1i.1 | ⊢ Ord 𝑀 |
| enp1i.2 | ⊢ 𝑁 = suc 𝑀 |
| enp1i.3 | ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) |
| enp1i.4 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| enp1i | ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enp1i.2 | . . 3 ⊢ 𝑁 = suc 𝑀 | |
| 2 | 1 | breq2i 5100 | . 2 ⊢ (𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀) |
| 3 | enp1i.1 | . . . . 5 ⊢ Ord 𝑀 | |
| 4 | encv 8880 | . . . . . . 7 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) | |
| 5 | 4 | simprd 495 | . . . . . 6 ⊢ (𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V) |
| 6 | sssucid 6389 | . . . . . . 7 ⊢ 𝑀 ⊆ suc 𝑀 | |
| 7 | ssexg 5262 | . . . . . . 7 ⊢ ((𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V) → 𝑀 ∈ V) | |
| 8 | 6, 7 | mpan 690 | . . . . . 6 ⊢ (suc 𝑀 ∈ V → 𝑀 ∈ V) |
| 9 | elong 6315 | . . . . . 6 ⊢ (𝑀 ∈ V → (𝑀 ∈ On ↔ Ord 𝑀)) | |
| 10 | 5, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝑀 ∈ On ↔ Ord 𝑀)) |
| 11 | 3, 10 | mpbiri 258 | . . . 4 ⊢ (𝐴 ≈ suc 𝑀 → 𝑀 ∈ On) |
| 12 | rexdif1en 9074 | . . . 4 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | |
| 13 | 11, 12 | mpancom 688 | . . 3 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 14 | enp1i.3 | . . . 4 ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) | |
| 15 | 14 | reximi 3067 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀 → ∃𝑥 ∈ 𝐴 𝜑) |
| 16 | df-rex 3054 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 17 | enp1i.4 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 18 | 17 | imp 406 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| 19 | 18 | eximi 1835 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜓) |
| 20 | 16, 19 | sylbi 217 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜓) |
| 21 | 13, 15, 20 | 3syl 18 | . 2 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑥𝜓) |
| 22 | 2, 21 | sylbi 217 | 1 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3436 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 class class class wbr 5092 Ord word 6306 Oncon0 6307 suc csuc 6309 ≈ cen 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-en 8873 |
| This theorem is referenced by: en2 9169 en3 9170 en4 9171 |
| Copyright terms: Public domain | W3C validator |