MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enp1i Structured version   Visualization version   GIF version

Theorem enp1i 8752
Description: Proof induction for en2i 8545 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.)
Hypotheses
Ref Expression
enp1i.1 𝑀 ∈ ω
enp1i.2 𝑁 = suc 𝑀
enp1i.3 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
enp1i.4 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
enp1i (𝐴𝑁 → ∃𝑥𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑀(𝑥)

Proof of Theorem enp1i
StepHypRef Expression
1 nsuceq0 6260 . . . . 5 suc 𝑀 ≠ ∅
2 breq1 5056 . . . . . . 7 (𝐴 = ∅ → (𝐴𝑁 ↔ ∅ ≈ 𝑁))
3 enp1i.2 . . . . . . . 8 𝑁 = suc 𝑀
4 ensym 8556 . . . . . . . . 9 (∅ ≈ 𝑁𝑁 ≈ ∅)
5 en0 8570 . . . . . . . . 9 (𝑁 ≈ ∅ ↔ 𝑁 = ∅)
64, 5sylib 221 . . . . . . . 8 (∅ ≈ 𝑁𝑁 = ∅)
73, 6syl5eqr 2873 . . . . . . 7 (∅ ≈ 𝑁 → suc 𝑀 = ∅)
82, 7syl6bi 256 . . . . . 6 (𝐴 = ∅ → (𝐴𝑁 → suc 𝑀 = ∅))
98necon3ad 3027 . . . . 5 (𝐴 = ∅ → (suc 𝑀 ≠ ∅ → ¬ 𝐴𝑁))
101, 9mpi 20 . . . 4 (𝐴 = ∅ → ¬ 𝐴𝑁)
1110con2i 141 . . 3 (𝐴𝑁 → ¬ 𝐴 = ∅)
12 neq0 4292 . . 3 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
1311, 12sylib 221 . 2 (𝐴𝑁 → ∃𝑥 𝑥𝐴)
143breq2i 5061 . . . . 5 (𝐴𝑁𝐴 ≈ suc 𝑀)
15 enp1i.1 . . . . . . . 8 𝑀 ∈ ω
16 dif1en 8750 . . . . . . . 8 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑥𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀)
1715, 16mp3an1 1445 . . . . . . 7 ((𝐴 ≈ suc 𝑀𝑥𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀)
18 enp1i.3 . . . . . . 7 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
1917, 18syl 17 . . . . . 6 ((𝐴 ≈ suc 𝑀𝑥𝐴) → 𝜑)
2019ex 416 . . . . 5 (𝐴 ≈ suc 𝑀 → (𝑥𝐴𝜑))
2114, 20sylbi 220 . . . 4 (𝐴𝑁 → (𝑥𝐴𝜑))
22 enp1i.4 . . . 4 (𝑥𝐴 → (𝜑𝜓))
2321, 22sylcom 30 . . 3 (𝐴𝑁 → (𝑥𝐴𝜓))
2423eximdv 1919 . 2 (𝐴𝑁 → (∃𝑥 𝑥𝐴 → ∃𝑥𝜓))
2513, 24mpd 15 1 (𝐴𝑁 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2115  wne 3014  cdif 3916  c0 4276  {csn 4550   class class class wbr 5053  suc csuc 6182  ωcom 7576  cen 8504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-br 5054  df-opab 5116  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-om 7577  df-1o 8100  df-er 8287  df-en 8508  df-fin 8511
This theorem is referenced by:  en2  8753  en3  8754  en4  8755
  Copyright terms: Public domain W3C validator