![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enp1i | Structured version Visualization version GIF version |
Description: Proof induction for en2i 8336 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
enp1i.1 | ⊢ 𝑀 ∈ ω |
enp1i.2 | ⊢ 𝑁 = suc 𝑀 |
enp1i.3 | ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) |
enp1i.4 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
enp1i | ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsuceq0 6103 | . . . . 5 ⊢ suc 𝑀 ≠ ∅ | |
2 | breq1 4926 | . . . . . . 7 ⊢ (𝐴 = ∅ → (𝐴 ≈ 𝑁 ↔ ∅ ≈ 𝑁)) | |
3 | enp1i.2 | . . . . . . . 8 ⊢ 𝑁 = suc 𝑀 | |
4 | ensym 8347 | . . . . . . . . 9 ⊢ (∅ ≈ 𝑁 → 𝑁 ≈ ∅) | |
5 | en0 8361 | . . . . . . . . 9 ⊢ (𝑁 ≈ ∅ ↔ 𝑁 = ∅) | |
6 | 4, 5 | sylib 210 | . . . . . . . 8 ⊢ (∅ ≈ 𝑁 → 𝑁 = ∅) |
7 | 3, 6 | syl5eqr 2822 | . . . . . . 7 ⊢ (∅ ≈ 𝑁 → suc 𝑀 = ∅) |
8 | 2, 7 | syl6bi 245 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ≈ 𝑁 → suc 𝑀 = ∅)) |
9 | 8 | necon3ad 2974 | . . . . 5 ⊢ (𝐴 = ∅ → (suc 𝑀 ≠ ∅ → ¬ 𝐴 ≈ 𝑁)) |
10 | 1, 9 | mpi 20 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≈ 𝑁) |
11 | 10 | con2i 137 | . . 3 ⊢ (𝐴 ≈ 𝑁 → ¬ 𝐴 = ∅) |
12 | neq0 4190 | . . 3 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
13 | 11, 12 | sylib 210 | . 2 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥 𝑥 ∈ 𝐴) |
14 | 3 | breq2i 4931 | . . . . 5 ⊢ (𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀) |
15 | enp1i.1 | . . . . . . . 8 ⊢ 𝑀 ∈ ω | |
16 | dif1en 8538 | . . . . . . . 8 ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀) | |
17 | 15, 16 | mp3an1 1427 | . . . . . . 7 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀) |
18 | enp1i.3 | . . . . . . 7 ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → 𝜑) |
20 | 19 | ex 405 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝑥 ∈ 𝐴 → 𝜑)) |
21 | 14, 20 | sylbi 209 | . . . 4 ⊢ (𝐴 ≈ 𝑁 → (𝑥 ∈ 𝐴 → 𝜑)) |
22 | enp1i.4 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
23 | 21, 22 | sylcom 30 | . . 3 ⊢ (𝐴 ≈ 𝑁 → (𝑥 ∈ 𝐴 → 𝜓)) |
24 | 23 | eximdv 1876 | . 2 ⊢ (𝐴 ≈ 𝑁 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥𝜓)) |
25 | 13, 24 | mpd 15 | 1 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∃wex 1742 ∈ wcel 2048 ≠ wne 2961 ∖ cdif 3822 ∅c0 4173 {csn 4435 class class class wbr 4923 suc csuc 6025 ωcom 7390 ≈ cen 8295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-om 7391 df-1o 7897 df-er 8081 df-en 8299 df-fin 8302 |
This theorem is referenced by: en2 8541 en3 8542 en4 8543 |
Copyright terms: Public domain | W3C validator |