| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enp1i | Structured version Visualization version GIF version | ||
| Description: Proof induction for en2 9159 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5298, ax-un 7663. (Revised by BTernaryTau, 6-Jan-2025.) |
| Ref | Expression |
|---|---|
| enp1i.1 | ⊢ Ord 𝑀 |
| enp1i.2 | ⊢ 𝑁 = suc 𝑀 |
| enp1i.3 | ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) |
| enp1i.4 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| enp1i | ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enp1i.2 | . . 3 ⊢ 𝑁 = suc 𝑀 | |
| 2 | 1 | breq2i 5094 | . 2 ⊢ (𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀) |
| 3 | enp1i.1 | . . . . 5 ⊢ Ord 𝑀 | |
| 4 | encv 8872 | . . . . . . 7 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) | |
| 5 | 4 | simprd 495 | . . . . . 6 ⊢ (𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V) |
| 6 | sssucid 6383 | . . . . . . 7 ⊢ 𝑀 ⊆ suc 𝑀 | |
| 7 | ssexg 5256 | . . . . . . 7 ⊢ ((𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V) → 𝑀 ∈ V) | |
| 8 | 6, 7 | mpan 690 | . . . . . 6 ⊢ (suc 𝑀 ∈ V → 𝑀 ∈ V) |
| 9 | elong 6309 | . . . . . 6 ⊢ (𝑀 ∈ V → (𝑀 ∈ On ↔ Ord 𝑀)) | |
| 10 | 5, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝑀 ∈ On ↔ Ord 𝑀)) |
| 11 | 3, 10 | mpbiri 258 | . . . 4 ⊢ (𝐴 ≈ suc 𝑀 → 𝑀 ∈ On) |
| 12 | rexdif1en 9065 | . . . 4 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | |
| 13 | 11, 12 | mpancom 688 | . . 3 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 14 | enp1i.3 | . . . 4 ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) | |
| 15 | 14 | reximi 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀 → ∃𝑥 ∈ 𝐴 𝜑) |
| 16 | df-rex 3057 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 17 | enp1i.4 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 18 | 17 | imp 406 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| 19 | 18 | eximi 1836 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜓) |
| 20 | 16, 19 | sylbi 217 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜓) |
| 21 | 13, 15, 20 | 3syl 18 | . 2 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑥𝜓) |
| 22 | 2, 21 | sylbi 217 | 1 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 {csn 4571 class class class wbr 5086 Ord word 6300 Oncon0 6301 suc csuc 6303 ≈ cen 8861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-en 8865 |
| This theorem is referenced by: en2 9159 en3 9160 en4 9161 |
| Copyright terms: Public domain | W3C validator |