MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enp1i Structured version   Visualization version   GIF version

Theorem enp1i 9119
Description: Proof induction for en2 9121 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5301, ax-un 7626. (Revised by BTernaryTau, 6-Jan-2025.)
Hypotheses
Ref Expression
enp1i.1 Ord 𝑀
enp1i.2 𝑁 = suc 𝑀
enp1i.3 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
enp1i.4 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
enp1i (𝐴𝑁 → ∃𝑥𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑁(𝑥)

Proof of Theorem enp1i
StepHypRef Expression
1 enp1i.2 . . 3 𝑁 = suc 𝑀
21breq2i 5093 . 2 (𝐴𝑁𝐴 ≈ suc 𝑀)
3 enp1i.1 . . . . 5 Ord 𝑀
4 encv 8787 . . . . . . 7 (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V))
54simprd 496 . . . . . 6 (𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V)
6 sssucid 6365 . . . . . . 7 𝑀 ⊆ suc 𝑀
7 ssexg 5260 . . . . . . 7 ((𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V) → 𝑀 ∈ V)
86, 7mpan 687 . . . . . 6 (suc 𝑀 ∈ V → 𝑀 ∈ V)
9 elong 6294 . . . . . 6 (𝑀 ∈ V → (𝑀 ∈ On ↔ Ord 𝑀))
105, 8, 93syl 18 . . . . 5 (𝐴 ≈ suc 𝑀 → (𝑀 ∈ On ↔ Ord 𝑀))
113, 10mpbiri 257 . . . 4 (𝐴 ≈ suc 𝑀𝑀 ∈ On)
12 rexdif1en 8998 . . . 4 ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
1311, 12mpancom 685 . . 3 (𝐴 ≈ suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
14 enp1i.3 . . . 4 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
1514reximi 3084 . . 3 (∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀 → ∃𝑥𝐴 𝜑)
16 df-rex 3072 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
17 enp1i.4 . . . . . 6 (𝑥𝐴 → (𝜑𝜓))
1817imp 407 . . . . 5 ((𝑥𝐴𝜑) → 𝜓)
1918eximi 1836 . . . 4 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜓)
2016, 19sylbi 216 . . 3 (∃𝑥𝐴 𝜑 → ∃𝑥𝜓)
2113, 15, 203syl 18 . 2 (𝐴 ≈ suc 𝑀 → ∃𝑥𝜓)
222, 21sylbi 216 1 (𝐴𝑁 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wex 1780  wcel 2105  wrex 3071  Vcvv 3441  cdif 3893  wss 3896  {csn 4569   class class class wbr 5085  Ord word 6285  Oncon0 6286  suc csuc 6288  cen 8776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-ord 6289  df-on 6290  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-en 8780
This theorem is referenced by:  en2  9121  en3  9122  en4  9123
  Copyright terms: Public domain W3C validator