| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enp1i | Structured version Visualization version GIF version | ||
| Description: Proof induction for en2 9233 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5323, ax-un 7714. (Revised by BTernaryTau, 6-Jan-2025.) |
| Ref | Expression |
|---|---|
| enp1i.1 | ⊢ Ord 𝑀 |
| enp1i.2 | ⊢ 𝑁 = suc 𝑀 |
| enp1i.3 | ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) |
| enp1i.4 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| enp1i | ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enp1i.2 | . . 3 ⊢ 𝑁 = suc 𝑀 | |
| 2 | 1 | breq2i 5118 | . 2 ⊢ (𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀) |
| 3 | enp1i.1 | . . . . 5 ⊢ Ord 𝑀 | |
| 4 | encv 8929 | . . . . . . 7 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) | |
| 5 | 4 | simprd 495 | . . . . . 6 ⊢ (𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V) |
| 6 | sssucid 6417 | . . . . . . 7 ⊢ 𝑀 ⊆ suc 𝑀 | |
| 7 | ssexg 5281 | . . . . . . 7 ⊢ ((𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V) → 𝑀 ∈ V) | |
| 8 | 6, 7 | mpan 690 | . . . . . 6 ⊢ (suc 𝑀 ∈ V → 𝑀 ∈ V) |
| 9 | elong 6343 | . . . . . 6 ⊢ (𝑀 ∈ V → (𝑀 ∈ On ↔ Ord 𝑀)) | |
| 10 | 5, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝑀 ∈ On ↔ Ord 𝑀)) |
| 11 | 3, 10 | mpbiri 258 | . . . 4 ⊢ (𝐴 ≈ suc 𝑀 → 𝑀 ∈ On) |
| 12 | rexdif1en 9128 | . . . 4 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | |
| 13 | 11, 12 | mpancom 688 | . . 3 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 14 | enp1i.3 | . . . 4 ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) | |
| 15 | 14 | reximi 3068 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀 → ∃𝑥 ∈ 𝐴 𝜑) |
| 16 | df-rex 3055 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 17 | enp1i.4 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 18 | 17 | imp 406 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| 19 | 18 | eximi 1835 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜓) |
| 20 | 16, 19 | sylbi 217 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜓) |
| 21 | 13, 15, 20 | 3syl 18 | . 2 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑥𝜓) |
| 22 | 2, 21 | sylbi 217 | 1 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 class class class wbr 5110 Ord word 6334 Oncon0 6335 suc csuc 6337 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-en 8922 |
| This theorem is referenced by: en2 9233 en3 9234 en4 9235 |
| Copyright terms: Public domain | W3C validator |