MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enp1i Structured version   Visualization version   GIF version

Theorem enp1i 9224
Description: Proof induction for en2 9226 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5320, ax-un 7711. (Revised by BTernaryTau, 6-Jan-2025.)
Hypotheses
Ref Expression
enp1i.1 Ord 𝑀
enp1i.2 𝑁 = suc 𝑀
enp1i.3 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
enp1i.4 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
enp1i (𝐴𝑁 → ∃𝑥𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑁(𝑥)

Proof of Theorem enp1i
StepHypRef Expression
1 enp1i.2 . . 3 𝑁 = suc 𝑀
21breq2i 5115 . 2 (𝐴𝑁𝐴 ≈ suc 𝑀)
3 enp1i.1 . . . . 5 Ord 𝑀
4 encv 8926 . . . . . . 7 (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V))
54simprd 495 . . . . . 6 (𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V)
6 sssucid 6414 . . . . . . 7 𝑀 ⊆ suc 𝑀
7 ssexg 5278 . . . . . . 7 ((𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V) → 𝑀 ∈ V)
86, 7mpan 690 . . . . . 6 (suc 𝑀 ∈ V → 𝑀 ∈ V)
9 elong 6340 . . . . . 6 (𝑀 ∈ V → (𝑀 ∈ On ↔ Ord 𝑀))
105, 8, 93syl 18 . . . . 5 (𝐴 ≈ suc 𝑀 → (𝑀 ∈ On ↔ Ord 𝑀))
113, 10mpbiri 258 . . . 4 (𝐴 ≈ suc 𝑀𝑀 ∈ On)
12 rexdif1en 9122 . . . 4 ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
1311, 12mpancom 688 . . 3 (𝐴 ≈ suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
14 enp1i.3 . . . 4 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
1514reximi 3067 . . 3 (∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀 → ∃𝑥𝐴 𝜑)
16 df-rex 3054 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
17 enp1i.4 . . . . . 6 (𝑥𝐴 → (𝜑𝜓))
1817imp 406 . . . . 5 ((𝑥𝐴𝜑) → 𝜓)
1918eximi 1835 . . . 4 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜓)
2016, 19sylbi 217 . . 3 (∃𝑥𝐴 𝜑 → ∃𝑥𝜓)
2113, 15, 203syl 18 . 2 (𝐴 ≈ suc 𝑀 → ∃𝑥𝜓)
222, 21sylbi 217 1 (𝐴𝑁 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3447  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107  Ord word 6331  Oncon0 6332  suc csuc 6334  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-en 8919
This theorem is referenced by:  en2  9226  en3  9227  en4  9228
  Copyright terms: Public domain W3C validator