![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enp1i | Structured version Visualization version GIF version |
Description: Proof induction for en2 9283 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5362, ax-un 7727. (Revised by BTernaryTau, 6-Jan-2025.) |
Ref | Expression |
---|---|
enp1i.1 | ⊢ Ord 𝑀 |
enp1i.2 | ⊢ 𝑁 = suc 𝑀 |
enp1i.3 | ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) |
enp1i.4 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
enp1i | ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enp1i.2 | . . 3 ⊢ 𝑁 = suc 𝑀 | |
2 | 1 | breq2i 5155 | . 2 ⊢ (𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀) |
3 | enp1i.1 | . . . . 5 ⊢ Ord 𝑀 | |
4 | encv 8949 | . . . . . . 7 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) | |
5 | 4 | simprd 494 | . . . . . 6 ⊢ (𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V) |
6 | sssucid 6443 | . . . . . . 7 ⊢ 𝑀 ⊆ suc 𝑀 | |
7 | ssexg 5322 | . . . . . . 7 ⊢ ((𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V) → 𝑀 ∈ V) | |
8 | 6, 7 | mpan 686 | . . . . . 6 ⊢ (suc 𝑀 ∈ V → 𝑀 ∈ V) |
9 | elong 6371 | . . . . . 6 ⊢ (𝑀 ∈ V → (𝑀 ∈ On ↔ Ord 𝑀)) | |
10 | 5, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝑀 ∈ On ↔ Ord 𝑀)) |
11 | 3, 10 | mpbiri 257 | . . . 4 ⊢ (𝐴 ≈ suc 𝑀 → 𝑀 ∈ On) |
12 | rexdif1en 9160 | . . . 4 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | |
13 | 11, 12 | mpancom 684 | . . 3 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
14 | enp1i.3 | . . . 4 ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) | |
15 | 14 | reximi 3082 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀 → ∃𝑥 ∈ 𝐴 𝜑) |
16 | df-rex 3069 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
17 | enp1i.4 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
18 | 17 | imp 405 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
19 | 18 | eximi 1835 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜓) |
20 | 16, 19 | sylbi 216 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜓) |
21 | 13, 15, 20 | 3syl 18 | . 2 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑥𝜓) |
22 | 2, 21 | sylbi 216 | 1 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∃wrex 3068 Vcvv 3472 ∖ cdif 3944 ⊆ wss 3947 {csn 4627 class class class wbr 5147 Ord word 6362 Oncon0 6363 suc csuc 6365 ≈ cen 8938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-en 8942 |
This theorem is referenced by: en2 9283 en3 9284 en4 9285 |
Copyright terms: Public domain | W3C validator |