Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enp1i | Structured version Visualization version GIF version |
Description: Proof induction for en2 9121 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5301, ax-un 7626. (Revised by BTernaryTau, 6-Jan-2025.) |
Ref | Expression |
---|---|
enp1i.1 | ⊢ Ord 𝑀 |
enp1i.2 | ⊢ 𝑁 = suc 𝑀 |
enp1i.3 | ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) |
enp1i.4 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
enp1i | ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enp1i.2 | . . 3 ⊢ 𝑁 = suc 𝑀 | |
2 | 1 | breq2i 5093 | . 2 ⊢ (𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀) |
3 | enp1i.1 | . . . . 5 ⊢ Ord 𝑀 | |
4 | encv 8787 | . . . . . . 7 ⊢ (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V)) | |
5 | 4 | simprd 496 | . . . . . 6 ⊢ (𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V) |
6 | sssucid 6365 | . . . . . . 7 ⊢ 𝑀 ⊆ suc 𝑀 | |
7 | ssexg 5260 | . . . . . . 7 ⊢ ((𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V) → 𝑀 ∈ V) | |
8 | 6, 7 | mpan 687 | . . . . . 6 ⊢ (suc 𝑀 ∈ V → 𝑀 ∈ V) |
9 | elong 6294 | . . . . . 6 ⊢ (𝑀 ∈ V → (𝑀 ∈ On ↔ Ord 𝑀)) | |
10 | 5, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝑀 ∈ On ↔ Ord 𝑀)) |
11 | 3, 10 | mpbiri 257 | . . . 4 ⊢ (𝐴 ≈ suc 𝑀 → 𝑀 ∈ On) |
12 | rexdif1en 8998 | . . . 4 ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | |
13 | 11, 12 | mpancom 685 | . . 3 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
14 | enp1i.3 | . . . 4 ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) | |
15 | 14 | reximi 3084 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀 → ∃𝑥 ∈ 𝐴 𝜑) |
16 | df-rex 3072 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
17 | enp1i.4 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
18 | 17 | imp 407 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
19 | 18 | eximi 1836 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜓) |
20 | 16, 19 | sylbi 216 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜓) |
21 | 13, 15, 20 | 3syl 18 | . 2 ⊢ (𝐴 ≈ suc 𝑀 → ∃𝑥𝜓) |
22 | 2, 21 | sylbi 216 | 1 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∃wrex 3071 Vcvv 3441 ∖ cdif 3893 ⊆ wss 3896 {csn 4569 class class class wbr 5085 Ord word 6285 Oncon0 6286 suc csuc 6288 ≈ cen 8776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-ord 6289 df-on 6290 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-en 8780 |
This theorem is referenced by: en2 9121 en3 9122 en4 9123 |
Copyright terms: Public domain | W3C validator |