MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enp1i Structured version   Visualization version   GIF version

Theorem enp1i 9281
Description: Proof induction for en2 9283 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5362, ax-un 7727. (Revised by BTernaryTau, 6-Jan-2025.)
Hypotheses
Ref Expression
enp1i.1 Ord 𝑀
enp1i.2 𝑁 = suc 𝑀
enp1i.3 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
enp1i.4 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
enp1i (𝐴𝑁 → ∃𝑥𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑁(𝑥)

Proof of Theorem enp1i
StepHypRef Expression
1 enp1i.2 . . 3 𝑁 = suc 𝑀
21breq2i 5155 . 2 (𝐴𝑁𝐴 ≈ suc 𝑀)
3 enp1i.1 . . . . 5 Ord 𝑀
4 encv 8949 . . . . . . 7 (𝐴 ≈ suc 𝑀 → (𝐴 ∈ V ∧ suc 𝑀 ∈ V))
54simprd 494 . . . . . 6 (𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V)
6 sssucid 6443 . . . . . . 7 𝑀 ⊆ suc 𝑀
7 ssexg 5322 . . . . . . 7 ((𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V) → 𝑀 ∈ V)
86, 7mpan 686 . . . . . 6 (suc 𝑀 ∈ V → 𝑀 ∈ V)
9 elong 6371 . . . . . 6 (𝑀 ∈ V → (𝑀 ∈ On ↔ Ord 𝑀))
105, 8, 93syl 18 . . . . 5 (𝐴 ≈ suc 𝑀 → (𝑀 ∈ On ↔ Ord 𝑀))
113, 10mpbiri 257 . . . 4 (𝐴 ≈ suc 𝑀𝑀 ∈ On)
12 rexdif1en 9160 . . . 4 ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
1311, 12mpancom 684 . . 3 (𝐴 ≈ suc 𝑀 → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
14 enp1i.3 . . . 4 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
1514reximi 3082 . . 3 (∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀 → ∃𝑥𝐴 𝜑)
16 df-rex 3069 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
17 enp1i.4 . . . . . 6 (𝑥𝐴 → (𝜑𝜓))
1817imp 405 . . . . 5 ((𝑥𝐴𝜑) → 𝜓)
1918eximi 1835 . . . 4 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜓)
2016, 19sylbi 216 . . 3 (∃𝑥𝐴 𝜑 → ∃𝑥𝜓)
2113, 15, 203syl 18 . 2 (𝐴 ≈ suc 𝑀 → ∃𝑥𝜓)
222, 21sylbi 216 1 (𝐴𝑁 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wex 1779  wcel 2104  wrex 3068  Vcvv 3472  cdif 3944  wss 3947  {csn 4627   class class class wbr 5147  Ord word 6362  Oncon0 6363  suc csuc 6365  cen 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-en 8942
This theorem is referenced by:  en2  9283  en3  9284  en4  9285
  Copyright terms: Public domain W3C validator