Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enp1i | Structured version Visualization version GIF version |
Description: Proof induction for en2i 8778 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
enp1i.1 | ⊢ 𝑀 ∈ ω |
enp1i.2 | ⊢ 𝑁 = suc 𝑀 |
enp1i.3 | ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) |
enp1i.4 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
enp1i | ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsuceq0 6346 | . . . . 5 ⊢ suc 𝑀 ≠ ∅ | |
2 | breq1 5077 | . . . . . . 7 ⊢ (𝐴 = ∅ → (𝐴 ≈ 𝑁 ↔ ∅ ≈ 𝑁)) | |
3 | enp1i.2 | . . . . . . . 8 ⊢ 𝑁 = suc 𝑀 | |
4 | ensym 8789 | . . . . . . . . 9 ⊢ (∅ ≈ 𝑁 → 𝑁 ≈ ∅) | |
5 | en0 8803 | . . . . . . . . 9 ⊢ (𝑁 ≈ ∅ ↔ 𝑁 = ∅) | |
6 | 4, 5 | sylib 217 | . . . . . . . 8 ⊢ (∅ ≈ 𝑁 → 𝑁 = ∅) |
7 | 3, 6 | eqtr3id 2792 | . . . . . . 7 ⊢ (∅ ≈ 𝑁 → suc 𝑀 = ∅) |
8 | 2, 7 | syl6bi 252 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ≈ 𝑁 → suc 𝑀 = ∅)) |
9 | 8 | necon3ad 2956 | . . . . 5 ⊢ (𝐴 = ∅ → (suc 𝑀 ≠ ∅ → ¬ 𝐴 ≈ 𝑁)) |
10 | 1, 9 | mpi 20 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≈ 𝑁) |
11 | 10 | con2i 139 | . . 3 ⊢ (𝐴 ≈ 𝑁 → ¬ 𝐴 = ∅) |
12 | neq0 4279 | . . 3 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
13 | 11, 12 | sylib 217 | . 2 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥 𝑥 ∈ 𝐴) |
14 | 3 | breq2i 5082 | . . . . 5 ⊢ (𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀) |
15 | enp1i.1 | . . . . . . . 8 ⊢ 𝑀 ∈ ω | |
16 | dif1en 8945 | . . . . . . . 8 ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀) | |
17 | 15, 16 | mp3an1 1447 | . . . . . . 7 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀) |
18 | enp1i.3 | . . . . . . 7 ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → 𝜑) |
20 | 19 | ex 413 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝑥 ∈ 𝐴 → 𝜑)) |
21 | 14, 20 | sylbi 216 | . . . 4 ⊢ (𝐴 ≈ 𝑁 → (𝑥 ∈ 𝐴 → 𝜑)) |
22 | enp1i.4 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
23 | 21, 22 | sylcom 30 | . . 3 ⊢ (𝐴 ≈ 𝑁 → (𝑥 ∈ 𝐴 → 𝜓)) |
24 | 23 | eximdv 1920 | . 2 ⊢ (𝐴 ≈ 𝑁 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥𝜓)) |
25 | 13, 24 | mpd 15 | 1 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ∅c0 4256 {csn 4561 class class class wbr 5074 suc csuc 6268 ωcom 7712 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-er 8498 df-en 8734 |
This theorem is referenced by: en2 9053 en3 9054 en4 9055 |
Copyright terms: Public domain | W3C validator |