MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1ennnALT Structured version   Visualization version   GIF version

Theorem dif1ennnALT 9311
Description: Alternate proof of dif1ennn 9201 using ax-pow 5365. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dif1ennnALT ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1ennnALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano2 7912 . . . . 5 (𝑀 ∈ ω → suc 𝑀 ∈ ω)
2 breq2 5147 . . . . . . 7 (𝑥 = suc 𝑀 → (𝐴𝑥𝐴 ≈ suc 𝑀))
32rspcev 3622 . . . . . 6 ((suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 9016 . . . . . 6 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
53, 4sylibr 234 . . . . 5 ((suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
61, 5sylan 580 . . . 4 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
7 diffi 9215 . . . . 5 (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin)
8 isfi 9016 . . . . 5 ((𝐴 ∖ {𝑋}) ∈ Fin ↔ ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
97, 8sylib 218 . . . 4 (𝐴 ∈ Fin → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
106, 9syl 17 . . 3 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
11103adant3 1133 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
12 en2sn 9081 . . . . . . . 8 ((𝑋𝐴𝑥 ∈ V) → {𝑋} ≈ {𝑥})
1312elvd 3486 . . . . . . 7 (𝑋𝐴 → {𝑋} ≈ {𝑥})
14 nnord 7895 . . . . . . . 8 (𝑥 ∈ ω → Ord 𝑥)
15 orddisj 6422 . . . . . . . 8 (Ord 𝑥 → (𝑥 ∩ {𝑥}) = ∅)
1614, 15syl 17 . . . . . . 7 (𝑥 ∈ ω → (𝑥 ∩ {𝑥}) = ∅)
17 incom 4209 . . . . . . . . . 10 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ({𝑋} ∩ (𝐴 ∖ {𝑋}))
18 disjdif 4472 . . . . . . . . . 10 ({𝑋} ∩ (𝐴 ∖ {𝑋})) = ∅
1917, 18eqtri 2765 . . . . . . . . 9 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅
20 unen 9086 . . . . . . . . . 10 ((((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ {𝑋} ≈ {𝑥}) ∧ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2120an4s 660 . . . . . . . . 9 ((((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅) ∧ ({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2219, 21mpanl2 701 . . . . . . . 8 (((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ ({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2322expcom 413 . . . . . . 7 (({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
2413, 16, 23syl2an 596 . . . . . 6 ((𝑋𝐴𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
25243ad2antl3 1188 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
26 difsnid 4810 . . . . . . . . 9 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
27 df-suc 6390 . . . . . . . . . . 11 suc 𝑥 = (𝑥 ∪ {𝑥})
2827eqcomi 2746 . . . . . . . . . 10 (𝑥 ∪ {𝑥}) = suc 𝑥
2928a1i 11 . . . . . . . . 9 (𝑋𝐴 → (𝑥 ∪ {𝑥}) = suc 𝑥)
3026, 29breq12d 5156 . . . . . . . 8 (𝑋𝐴 → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
31303ad2ant3 1136 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
3231adantr 480 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
33 ensym 9043 . . . . . . . . . . 11 (𝐴 ≈ suc 𝑀 → suc 𝑀𝐴)
34 entr 9046 . . . . . . . . . . . . 13 ((suc 𝑀𝐴𝐴 ≈ suc 𝑥) → suc 𝑀 ≈ suc 𝑥)
35 peano2 7912 . . . . . . . . . . . . . 14 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
36 nneneq 9246 . . . . . . . . . . . . . 14 ((suc 𝑀 ∈ ω ∧ suc 𝑥 ∈ ω) → (suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥))
3735, 36sylan2 593 . . . . . . . . . . . . 13 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥))
3834, 37imbitrid 244 . . . . . . . . . . . 12 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → ((suc 𝑀𝐴𝐴 ≈ suc 𝑥) → suc 𝑀 = suc 𝑥))
3938expd 415 . . . . . . . . . . 11 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀𝐴 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
4033, 39syl5 34 . . . . . . . . . 10 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
411, 40sylan 580 . . . . . . . . 9 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
4241imp 406 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
4342an32s 652 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
44433adantl3 1169 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
4532, 44sylbid 240 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) → suc 𝑀 = suc 𝑥))
46 peano4 7914 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
4746biimpd 229 . . . . . 6 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
48473ad2antl1 1186 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
4925, 45, 483syld 60 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥𝑀 = 𝑥))
50 breq2 5147 . . . . 5 (𝑀 = 𝑥 → ((𝐴 ∖ {𝑋}) ≈ 𝑀 ↔ (𝐴 ∖ {𝑋}) ≈ 𝑥))
5150biimprcd 250 . . . 4 ((𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝑀 = 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5249, 51sylcom 30 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5352rexlimdva 3155 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5411, 53mpd 15 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  cdif 3948  cun 3949  cin 3950  c0 4333  {csn 4626   class class class wbr 5143  Ord word 6383  suc csuc 6386  ωcom 7887  cen 8982  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-er 8745  df-en 8986  df-fin 8989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator