| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrrdi | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqbrtrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqbrtrrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqbrtrrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 4 | 2, 3 | eqbrtrdi 5125 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 class class class wbr 5086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 |
| This theorem is referenced by: grur1 10706 t1connperf 23346 basellem9 27021 sqff1o 27114 ballotlemic 34512 ballotlem1c 34513 pibt2 37451 |
| Copyright terms: Public domain | W3C validator |