| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrrdi | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqbrtrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqbrtrrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqbrtrrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 4 | 2, 3 | eqbrtrdi 5134 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 |
| This theorem is referenced by: grur1 10733 t1connperf 23340 basellem9 27016 sqff1o 27109 ballotlemic 34494 ballotlem1c 34495 pibt2 37410 |
| Copyright terms: Public domain | W3C validator |