![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtrrdi | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqbrtrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqbrtrrdi.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqbrtrrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
4 | 2, 3 | eqbrtrdi 5205 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: grur1 10889 t1connperf 23465 basellem9 27150 sqff1o 27243 ballotlemic 34471 ballotlem1c 34472 pibt2 37383 |
Copyright terms: Public domain | W3C validator |