MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrtrrdi Structured version   Visualization version   GIF version

Theorem eqbrtrrdi 5126
Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqbrtrrdi.1 (𝜑𝐵 = 𝐴)
eqbrtrrdi.2 𝐵𝑅𝐶
Assertion
Ref Expression
eqbrtrrdi (𝜑𝐴𝑅𝐶)

Proof of Theorem eqbrtrrdi
StepHypRef Expression
1 eqbrtrrdi.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2737 . 2 (𝜑𝐴 = 𝐵)
3 eqbrtrrdi.2 . 2 𝐵𝑅𝐶
42, 3eqbrtrdi 5125 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   class class class wbr 5086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087
This theorem is referenced by:  grur1  10706  t1connperf  23346  basellem9  27021  sqff1o  27114  ballotlemic  34512  ballotlem1c  34513  pibt2  37451
  Copyright terms: Public domain W3C validator