Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemic Structured version   Visualization version   GIF version

Theorem ballotlemic 33106
Description: If the first vote is for B, the vote on the first tie is for A. (Contributed by Thierry Arnoux, 1-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemic ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ 𝐶)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemic
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 eldifi 4086 . . . 4 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
76ad2antrr 724 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
8 ballotth.e . . . . . . . . . 10 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
9 ballotth.mgtn . . . . . . . . . 10 𝑁 < 𝑀
10 ballotth.i . . . . . . . . . 10 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
111, 2, 3, 4, 5, 8, 9, 10ballotlemiex 33101 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1211simpld 495 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
13 elfznn 13470 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℕ)
1412, 13syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℕ)
1514adantr 481 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ ℕ)
161, 2, 3, 4, 5, 8, 9, 10ballotlemi1 33102 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
17 eluz2b3 12847 . . . . . 6 ((𝐼𝐶) ∈ (ℤ‘2) ↔ ((𝐼𝐶) ∈ ℕ ∧ (𝐼𝐶) ≠ 1))
1815, 16, 17sylanbrc 583 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ (ℤ‘2))
19 uz2m1nn 12848 . . . . 5 ((𝐼𝐶) ∈ (ℤ‘2) → ((𝐼𝐶) − 1) ∈ ℕ)
2018, 19syl 17 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
2120adantr 481 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
22 elnnuz 12807 . . . . . . 7 (((𝐼𝐶) − 1) ∈ ℕ ↔ ((𝐼𝐶) − 1) ∈ (ℤ‘1))
2322biimpi 215 . . . . . 6 (((𝐼𝐶) − 1) ∈ ℕ → ((𝐼𝐶) − 1) ∈ (ℤ‘1))
24 eluzfz1 13448 . . . . . 6 (((𝐼𝐶) − 1) ∈ (ℤ‘1) → 1 ∈ (1...((𝐼𝐶) − 1)))
2520, 23, 243syl 18 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
2625adantr 481 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
27 1nn 12164 . . . . . . . . . . 11 1 ∈ ℕ
2827a1i 11 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℕ)
291, 2, 3, 4, 5, 6, 28ballotlemfp1 33091 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3029simpld 495 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
3130imp 407 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1))
32 1m1e0 12225 . . . . . . . . . 10 (1 − 1) = 0
3332fveq2i 6845 . . . . . . . . 9 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
3433oveq1i 7367 . . . . . . . 8 (((𝐹𝐶)‘(1 − 1)) − 1) = (((𝐹𝐶)‘0) − 1)
3534a1i 11 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹𝐶)‘(1 − 1)) − 1) = (((𝐹𝐶)‘0) − 1))
361, 2, 3, 4, 5ballotlemfval0 33095 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
376, 36syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘0) = 0)
3837adantr 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘0) = 0)
3938oveq1d 7372 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹𝐶)‘0) − 1) = (0 − 1))
4031, 35, 393eqtrrd 2781 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (0 − 1) = ((𝐹𝐶)‘1))
41 0le1 11678 . . . . . . 7 0 ≤ 1
42 0re 11157 . . . . . . . 8 0 ∈ ℝ
43 1re 11155 . . . . . . . 8 1 ∈ ℝ
44 suble0 11669 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((0 − 1) ≤ 0 ↔ 0 ≤ 1))
4542, 43, 44mp2an 690 . . . . . . 7 ((0 − 1) ≤ 0 ↔ 0 ≤ 1)
4641, 45mpbir 230 . . . . . 6 (0 − 1) ≤ 0
4740, 46eqbrtrrdi 5145 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) ≤ 0)
4847adantr 481 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘1) ≤ 0)
49 fveq2 6842 . . . . . 6 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
5049breq1d 5115 . . . . 5 (𝑖 = 1 → (((𝐹𝐶)‘𝑖) ≤ 0 ↔ ((𝐹𝐶)‘1) ≤ 0))
5150rspcev 3581 . . . 4 ((1 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘1) ≤ 0) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑖) ≤ 0)
5226, 48, 51syl2anc 584 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑖) ≤ 0)
53 0lt1 11677 . . . . 5 0 < 1
54 1p0e1 12277 . . . . . 6 (1 + 0) = 1
551, 2, 3, 4, 5, 6, 14ballotlemfp1 33091 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((¬ (𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1)) ∧ ((𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1))))
5655simpld 495 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (¬ (𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1)))
5756imp 407 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1))
5811simprd 496 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
5958adantr 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
6057, 59eqtr3d 2778 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1) = 0)
616adantr 481 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
6214nnzd 12526 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
6362adantr 481 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → (𝐼𝐶) ∈ ℤ)
64 1zzd 12534 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℤ)
6563, 64zsubcld 12612 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℤ)
661, 2, 3, 4, 5, 61, 65ballotlemfelz 33090 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℤ)
6766zcnd 12608 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℂ)
68 1cnd 11150 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℂ)
69 0cnd 11148 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 0 ∈ ℂ)
7067, 68, 69subaddd 11530 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1) = 0 ↔ (1 + 0) = ((𝐹𝐶)‘((𝐼𝐶) − 1))))
7160, 70mpbid 231 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → (1 + 0) = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
7254, 71eqtr3id 2790 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
7353, 72breqtrid 5142 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 0 < ((𝐹𝐶)‘((𝐼𝐶) − 1)))
7473adantlr 713 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 0 < ((𝐹𝐶)‘((𝐼𝐶) − 1)))
751, 2, 3, 4, 5, 7, 21, 52, 74ballotlemfc0 33092 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
761, 2, 3, 4, 5, 8, 9, 10ballotlemimin 33105 . . 3 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7776ad2antrr 724 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7875, 77condan 816 1 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  cdif 3907  cin 3909  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  infcinf 9377  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  cz 12499  cuz 12763  ...cfz 13424  chash 14230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231
This theorem is referenced by:  ballotlem7  33135
  Copyright terms: Public domain W3C validator