Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemic Structured version   Visualization version   GIF version

Theorem ballotlemic 34179
Description: If the first vote is for B, the vote on the first tie is for A. (Contributed by Thierry Arnoux, 1-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemic ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ 𝐶)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemic
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 eldifi 4120 . . . 4 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
76ad2antrr 724 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
8 ballotth.e . . . . . . . . . 10 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
9 ballotth.mgtn . . . . . . . . . 10 𝑁 < 𝑀
10 ballotth.i . . . . . . . . . 10 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
111, 2, 3, 4, 5, 8, 9, 10ballotlemiex 34174 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1211simpld 493 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
13 elfznn 13557 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℕ)
1412, 13syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℕ)
1514adantr 479 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ ℕ)
161, 2, 3, 4, 5, 8, 9, 10ballotlemi1 34175 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
17 eluz2b3 12931 . . . . . 6 ((𝐼𝐶) ∈ (ℤ‘2) ↔ ((𝐼𝐶) ∈ ℕ ∧ (𝐼𝐶) ≠ 1))
1815, 16, 17sylanbrc 581 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ (ℤ‘2))
19 uz2m1nn 12932 . . . . 5 ((𝐼𝐶) ∈ (ℤ‘2) → ((𝐼𝐶) − 1) ∈ ℕ)
2018, 19syl 17 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
2120adantr 479 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
22 elnnuz 12891 . . . . . . 7 (((𝐼𝐶) − 1) ∈ ℕ ↔ ((𝐼𝐶) − 1) ∈ (ℤ‘1))
2322biimpi 215 . . . . . 6 (((𝐼𝐶) − 1) ∈ ℕ → ((𝐼𝐶) − 1) ∈ (ℤ‘1))
24 eluzfz1 13535 . . . . . 6 (((𝐼𝐶) − 1) ∈ (ℤ‘1) → 1 ∈ (1...((𝐼𝐶) − 1)))
2520, 23, 243syl 18 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
2625adantr 479 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
27 1nn 12248 . . . . . . . . . . 11 1 ∈ ℕ
2827a1i 11 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℕ)
291, 2, 3, 4, 5, 6, 28ballotlemfp1 34164 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3029simpld 493 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
3130imp 405 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1))
32 1m1e0 12309 . . . . . . . . . 10 (1 − 1) = 0
3332fveq2i 6893 . . . . . . . . 9 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
3433oveq1i 7423 . . . . . . . 8 (((𝐹𝐶)‘(1 − 1)) − 1) = (((𝐹𝐶)‘0) − 1)
3534a1i 11 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹𝐶)‘(1 − 1)) − 1) = (((𝐹𝐶)‘0) − 1))
361, 2, 3, 4, 5ballotlemfval0 34168 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
376, 36syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘0) = 0)
3837adantr 479 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘0) = 0)
3938oveq1d 7428 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹𝐶)‘0) − 1) = (0 − 1))
4031, 35, 393eqtrrd 2770 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (0 − 1) = ((𝐹𝐶)‘1))
41 0le1 11762 . . . . . . 7 0 ≤ 1
42 0re 11241 . . . . . . . 8 0 ∈ ℝ
43 1re 11239 . . . . . . . 8 1 ∈ ℝ
44 suble0 11753 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((0 − 1) ≤ 0 ↔ 0 ≤ 1))
4542, 43, 44mp2an 690 . . . . . . 7 ((0 − 1) ≤ 0 ↔ 0 ≤ 1)
4641, 45mpbir 230 . . . . . 6 (0 − 1) ≤ 0
4740, 46eqbrtrrdi 5184 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) ≤ 0)
4847adantr 479 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘1) ≤ 0)
49 fveq2 6890 . . . . . 6 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
5049breq1d 5154 . . . . 5 (𝑖 = 1 → (((𝐹𝐶)‘𝑖) ≤ 0 ↔ ((𝐹𝐶)‘1) ≤ 0))
5150rspcev 3603 . . . 4 ((1 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘1) ≤ 0) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑖) ≤ 0)
5226, 48, 51syl2anc 582 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑖) ≤ 0)
53 0lt1 11761 . . . . 5 0 < 1
54 1p0e1 12361 . . . . . 6 (1 + 0) = 1
551, 2, 3, 4, 5, 6, 14ballotlemfp1 34164 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((¬ (𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1)) ∧ ((𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1))))
5655simpld 493 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (¬ (𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1)))
5756imp 405 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1))
5811simprd 494 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
5958adantr 479 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
6057, 59eqtr3d 2767 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1) = 0)
616adantr 479 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
6214nnzd 12610 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
6362adantr 479 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → (𝐼𝐶) ∈ ℤ)
64 1zzd 12618 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℤ)
6563, 64zsubcld 12696 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℤ)
661, 2, 3, 4, 5, 61, 65ballotlemfelz 34163 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℤ)
6766zcnd 12692 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℂ)
68 1cnd 11234 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℂ)
69 0cnd 11232 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 0 ∈ ℂ)
7067, 68, 69subaddd 11614 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1) = 0 ↔ (1 + 0) = ((𝐹𝐶)‘((𝐼𝐶) − 1))))
7160, 70mpbid 231 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → (1 + 0) = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
7254, 71eqtr3id 2779 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
7353, 72breqtrid 5181 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 0 < ((𝐹𝐶)‘((𝐼𝐶) − 1)))
7473adantlr 713 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 0 < ((𝐹𝐶)‘((𝐼𝐶) − 1)))
751, 2, 3, 4, 5, 7, 21, 52, 74ballotlemfc0 34165 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
761, 2, 3, 4, 5, 8, 9, 10ballotlemimin 34178 . . 3 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7776ad2antrr 724 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7875, 77condan 816 1 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2930  wral 3051  wrex 3060  {crab 3419  cdif 3938  cin 3940  𝒫 cpw 4599   class class class wbr 5144  cmpt 5227  cfv 6543  (class class class)co 7413  infcinf 9459  cr 11132  0cc0 11133  1c1 11134   + caddc 11136   < clt 11273  cle 11274  cmin 11469   / cdiv 11896  cn 12237  2c2 12292  cz 12583  cuz 12847  ...cfz 13511  chash 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-inf 9461  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-hash 14317
This theorem is referenced by:  ballotlem7  34208
  Copyright terms: Public domain W3C validator