Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem1c Structured version   Visualization version   GIF version

Theorem ballotlem1c 33575
Description: If the first vote is for A, the vote on the first tie is for B. (Contributed by Thierry Arnoux, 4-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlem1c ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼𝐶) ∈ 𝐶)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem1c
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 eldifi 4126 . . . 4 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
76ad2antrr 724 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
8 ballotth.e . . . . . . . . . 10 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
9 ballotth.mgtn . . . . . . . . . 10 𝑁 < 𝑀
10 ballotth.i . . . . . . . . . 10 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
111, 2, 3, 4, 5, 8, 9, 10ballotlemiex 33569 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1211simpld 495 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
13 elfznn 13532 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℕ)
1412, 13syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℕ)
1514adantr 481 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ∈ ℕ)
161, 2, 3, 4, 5, 8, 9, 10ballotlemii 33571 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
17 eluz2b3 12908 . . . . . 6 ((𝐼𝐶) ∈ (ℤ‘2) ↔ ((𝐼𝐶) ∈ ℕ ∧ (𝐼𝐶) ≠ 1))
1815, 16, 17sylanbrc 583 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ∈ (ℤ‘2))
19 uz2m1nn 12909 . . . . 5 ((𝐼𝐶) ∈ (ℤ‘2) → ((𝐼𝐶) − 1) ∈ ℕ)
2018, 19syl 17 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
2120adantr 481 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
22 elnnuz 12868 . . . . . . 7 (((𝐼𝐶) − 1) ∈ ℕ ↔ ((𝐼𝐶) − 1) ∈ (ℤ‘1))
2322biimpi 215 . . . . . 6 (((𝐼𝐶) − 1) ∈ ℕ → ((𝐼𝐶) − 1) ∈ (ℤ‘1))
24 eluzfz1 13510 . . . . . 6 (((𝐼𝐶) − 1) ∈ (ℤ‘1) → 1 ∈ (1...((𝐼𝐶) − 1)))
2520, 23, 243syl 18 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
2625adantr 481 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
27 0le1 11739 . . . . . . 7 0 ≤ 1
28 1e0p1 12721 . . . . . . 7 1 = (0 + 1)
2927, 28breqtri 5173 . . . . . 6 0 ≤ (0 + 1)
30 1nn 12225 . . . . . . . . . . 11 1 ∈ ℕ
3130a1i 11 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℕ)
321, 2, 3, 4, 5, 6, 31ballotlemfp1 33559 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3332simprd 496 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1)))
3433imp 407 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))
35 1m1e0 12286 . . . . . . . . . 10 (1 − 1) = 0
3635fveq2i 6894 . . . . . . . . 9 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
3736oveq1i 7421 . . . . . . . 8 (((𝐹𝐶)‘(1 − 1)) + 1) = (((𝐹𝐶)‘0) + 1)
3837a1i 11 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (((𝐹𝐶)‘(1 − 1)) + 1) = (((𝐹𝐶)‘0) + 1))
391, 2, 3, 4, 5ballotlemfval0 33563 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
406, 39syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘0) = 0)
4140adantr 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐹𝐶)‘0) = 0)
4241oveq1d 7426 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (((𝐹𝐶)‘0) + 1) = (0 + 1))
4334, 38, 423eqtrrd 2777 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (0 + 1) = ((𝐹𝐶)‘1))
4429, 43breqtrid 5185 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → 0 ≤ ((𝐹𝐶)‘1))
4544adantr 481 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → 0 ≤ ((𝐹𝐶)‘1))
46 fveq2 6891 . . . . . 6 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
4746breq2d 5160 . . . . 5 (𝑖 = 1 → (0 ≤ ((𝐹𝐶)‘𝑖) ↔ 0 ≤ ((𝐹𝐶)‘1)))
4847rspcev 3612 . . . 4 ((1 ∈ (1...((𝐼𝐶) − 1)) ∧ 0 ≤ ((𝐹𝐶)‘1)) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))0 ≤ ((𝐹𝐶)‘𝑖))
4926, 45, 48syl2anc 584 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))0 ≤ ((𝐹𝐶)‘𝑖))
50 df-neg 11449 . . . . . 6 -1 = (0 − 1)
511, 2, 3, 4, 5, 6, 14ballotlemfp1 33559 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((¬ (𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1)) ∧ ((𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1))))
5251simprd 496 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1)))
5352imp 407 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1))
5411simprd 496 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
5554adantr 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
5653, 55eqtr3d 2774 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1) = 0)
57 0cnd 11209 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 0 ∈ ℂ)
58 1cnd 11211 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℂ)
596adantr 481 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
6014nnzd 12587 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
6160adantr 481 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → (𝐼𝐶) ∈ ℤ)
62 1zzd 12595 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℤ)
6361, 62zsubcld 12673 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℤ)
641, 2, 3, 4, 5, 59, 63ballotlemfelz 33558 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℤ)
6564zcnd 12669 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℂ)
6657, 58, 65subadd2d 11592 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((0 − 1) = ((𝐹𝐶)‘((𝐼𝐶) − 1)) ↔ (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1) = 0))
6756, 66mpbird 256 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → (0 − 1) = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
6850, 67eqtrid 2784 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → -1 = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
69 neg1lt0 12331 . . . . 5 -1 < 0
7068, 69eqbrtrrdi 5188 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) < 0)
7170adantlr 713 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) < 0)
721, 2, 3, 4, 5, 7, 21, 49, 71ballotlemfcc 33561 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
731, 2, 3, 4, 5, 8, 9, 10ballotlemimin 33573 . . 3 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7473ad2antrr 724 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7572, 74pm2.65da 815 1 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼𝐶) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  {crab 3432  cdif 3945  cin 3947  𝒫 cpw 4602   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7411  infcinf 9438  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11250  cle 11251  cmin 11446  -cneg 11447   / cdiv 11873  cn 12214  2c2 12269  cz 12560  cuz 12824  ...cfz 13486  chash 14292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-dju 9898  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-hash 14293
This theorem is referenced by:  ballotlem7  33603
  Copyright terms: Public domain W3C validator