Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem9 Structured version   Visualization version   GIF version

Theorem basellem9 25678
 Description: Lemma for basel 25679. Since by basellem8 25677 𝐹 is bounded by two expressions that tend to π↑2 / 6, 𝐹 must also go to π↑2 / 6 by the squeeze theorem climsqz 14993. But the series 𝐹 is exactly the partial sums of 𝑘↑-2, so it follows that this is also the value of the infinite sum Σ𝑘 ∈ ℕ(𝑘↑-2). (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basel.f 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
basel.h 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺))
basel.j 𝐽 = (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))
basel.k 𝐾 = (𝐻f · ((ℕ × {1}) ∘f + 𝐺))
Assertion
Ref Expression
basellem9 Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6)
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺   𝑘,𝐻   𝑘,𝐽,𝑛   𝑘,𝐾
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝐾(𝑛)

Proof of Theorem basellem9
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12273 . . 3 ℕ = (ℤ‘1)
2 1zzd 12005 . . 3 (⊤ → 1 ∈ ℤ)
3 oveq1 7146 . . . . 5 (𝑛 = 𝑘 → (𝑛↑-2) = (𝑘↑-2))
4 eqid 2801 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑛↑-2)) = (𝑛 ∈ ℕ ↦ (𝑛↑-2))
5 ovex 7172 . . . . 5 (𝑘↑-2) ∈ V
63, 4, 5fvmpt 6749 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
76adantl 485 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
8 nnre 11636 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9 nnne0 11663 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
10 2z 12006 . . . . . . . . . . 11 2 ∈ ℤ
11 znegcl 12009 . . . . . . . . . . 11 (2 ∈ ℤ → -2 ∈ ℤ)
1210, 11ax-mp 5 . . . . . . . . . 10 -2 ∈ ℤ
1312a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → -2 ∈ ℤ)
148, 9, 13reexpclzd 13610 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑-2) ∈ ℝ)
1514adantl 485 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝑛↑-2) ∈ ℝ)
1615, 4fmptd 6859 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (𝑛↑-2)):ℕ⟶ℝ)
1716ffvelrnda 6832 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) ∈ ℝ)
187, 17eqeltrrd 2894 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘↑-2) ∈ ℝ)
1918recnd 10662 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘↑-2) ∈ ℂ)
201, 2, 17serfre 13399 . . . . . . . . . . 11 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))):ℕ⟶ℝ)
21 basel.f . . . . . . . . . . . 12 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
2221feq1i 6482 . . . . . . . . . . 11 (𝐹:ℕ⟶ℝ ↔ seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))):ℕ⟶ℝ)
2320, 22sylibr 237 . . . . . . . . . 10 (⊤ → 𝐹:ℕ⟶ℝ)
2423ffvelrnda 6832 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
2524recnd 10662 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
26 remulcl 10615 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2726adantl 485 . . . . . . . . . . . 12 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
28 ovex 7172 . . . . . . . . . . . . . . . 16 ((π↑2) / 6) ∈ V
2928fconst 6543 . . . . . . . . . . . . . . 15 (ℕ × {((π↑2) / 6)}):ℕ⟶{((π↑2) / 6)}
30 pire 25055 . . . . . . . . . . . . . . . . . . 19 π ∈ ℝ
3130resqcli 13549 . . . . . . . . . . . . . . . . . 18 (π↑2) ∈ ℝ
32 6re 11719 . . . . . . . . . . . . . . . . . 18 6 ∈ ℝ
33 6nn 11718 . . . . . . . . . . . . . . . . . . 19 6 ∈ ℕ
3433nnne0i 11669 . . . . . . . . . . . . . . . . . 18 6 ≠ 0
3531, 32, 34redivcli 11400 . . . . . . . . . . . . . . . . 17 ((π↑2) / 6) ∈ ℝ
3635a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → ((π↑2) / 6) ∈ ℝ)
3736snssd 4705 . . . . . . . . . . . . . . 15 (⊤ → {((π↑2) / 6)} ⊆ ℝ)
38 fss 6505 . . . . . . . . . . . . . . 15 (((ℕ × {((π↑2) / 6)}):ℕ⟶{((π↑2) / 6)} ∧ {((π↑2) / 6)} ⊆ ℝ) → (ℕ × {((π↑2) / 6)}):ℕ⟶ℝ)
3929, 37, 38sylancr 590 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {((π↑2) / 6)}):ℕ⟶ℝ)
40 resubcl 10943 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
4140adantl 485 . . . . . . . . . . . . . . 15 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
42 1ex 10630 . . . . . . . . . . . . . . . . 17 1 ∈ V
4342fconst 6543 . . . . . . . . . . . . . . . 16 (ℕ × {1}):ℕ⟶{1}
44 1red 10635 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ℝ)
4544snssd 4705 . . . . . . . . . . . . . . . 16 (⊤ → {1} ⊆ ℝ)
46 fss 6505 . . . . . . . . . . . . . . . 16 (((ℕ × {1}):ℕ⟶{1} ∧ {1} ⊆ ℝ) → (ℕ × {1}):ℕ⟶ℝ)
4743, 45, 46sylancr 590 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {1}):ℕ⟶ℝ)
48 2nn 11702 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
4948a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → 2 ∈ ℕ)
50 nnmulcl 11653 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
5149, 50sylan 583 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
5251peano2nnd 11646 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑛 ∈ ℕ) → ((2 · 𝑛) + 1) ∈ ℕ)
5352nnrecred 11680 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
54 basel.g . . . . . . . . . . . . . . . 16 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
5553, 54fmptd 6859 . . . . . . . . . . . . . . 15 (⊤ → 𝐺:ℕ⟶ℝ)
56 nnex 11635 . . . . . . . . . . . . . . . 16 ℕ ∈ V
5756a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ℕ ∈ V)
58 inidm 4148 . . . . . . . . . . . . . . 15 (ℕ ∩ ℕ) = ℕ
5941, 47, 55, 57, 57, 58off 7408 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {1}) ∘f𝐺):ℕ⟶ℝ)
6027, 39, 59, 57, 57, 58off 7408 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺)):ℕ⟶ℝ)
61 basel.h . . . . . . . . . . . . . 14 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺))
6261feq1i 6482 . . . . . . . . . . . . 13 (𝐻:ℕ⟶ℝ ↔ ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺)):ℕ⟶ℝ)
6360, 62sylibr 237 . . . . . . . . . . . 12 (⊤ → 𝐻:ℕ⟶ℝ)
64 readdcl 10613 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
6564adantl 485 . . . . . . . . . . . . 13 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
66 negex 10877 . . . . . . . . . . . . . . . 16 -2 ∈ V
6766fconst 6543 . . . . . . . . . . . . . . 15 (ℕ × {-2}):ℕ⟶{-2}
6812zrei 11979 . . . . . . . . . . . . . . . . 17 -2 ∈ ℝ
6968a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → -2 ∈ ℝ)
7069snssd 4705 . . . . . . . . . . . . . . 15 (⊤ → {-2} ⊆ ℝ)
71 fss 6505 . . . . . . . . . . . . . . 15 (((ℕ × {-2}):ℕ⟶{-2} ∧ {-2} ⊆ ℝ) → (ℕ × {-2}):ℕ⟶ℝ)
7267, 70, 71sylancr 590 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {-2}):ℕ⟶ℝ)
7327, 72, 55, 57, 57, 58off 7408 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {-2}) ∘f · 𝐺):ℕ⟶ℝ)
7465, 47, 73, 57, 57, 58off 7408 . . . . . . . . . . . 12 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)):ℕ⟶ℝ)
7527, 63, 74, 57, 57, 58off 7408 . . . . . . . . . . 11 (⊤ → (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))):ℕ⟶ℝ)
76 basel.j . . . . . . . . . . . 12 𝐽 = (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))
7776feq1i 6482 . . . . . . . . . . 11 (𝐽:ℕ⟶ℝ ↔ (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))):ℕ⟶ℝ)
7875, 77sylibr 237 . . . . . . . . . 10 (⊤ → 𝐽:ℕ⟶ℝ)
7978ffvelrnda 6832 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐽𝑛) ∈ ℝ)
8079recnd 10662 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐽𝑛) ∈ ℂ)
8125, 80npcand 10994 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → (((𝐹𝑛) − (𝐽𝑛)) + (𝐽𝑛)) = (𝐹𝑛))
8281mpteq2dva 5128 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (((𝐹𝑛) − (𝐽𝑛)) + (𝐽𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
83 ovexd 7174 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) − (𝐽𝑛)) ∈ V)
8423feqmptd 6712 . . . . . . . 8 (⊤ → 𝐹 = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
8578feqmptd 6712 . . . . . . . 8 (⊤ → 𝐽 = (𝑛 ∈ ℕ ↦ (𝐽𝑛)))
8657, 24, 79, 84, 85offval2 7410 . . . . . . 7 (⊤ → (𝐹f𝐽) = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) − (𝐽𝑛))))
8757, 83, 79, 86, 85offval2 7410 . . . . . 6 (⊤ → ((𝐹f𝐽) ∘f + 𝐽) = (𝑛 ∈ ℕ ↦ (((𝐹𝑛) − (𝐽𝑛)) + (𝐽𝑛))))
8882, 87, 843eqtr4d 2846 . . . . 5 (⊤ → ((𝐹f𝐽) ∘f + 𝐽) = 𝐹)
8965, 47, 55, 57, 57, 58off 7408 . . . . . . . . . 10 (⊤ → ((ℕ × {1}) ∘f + 𝐺):ℕ⟶ℝ)
90 recn 10620 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
91 recn 10620 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
92 recn 10620 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
93 subdi 11066 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9490, 91, 92, 93syl3an 1157 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9594adantl 485 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9657, 63, 89, 74, 95caofdi 7429 . . . . . . . . 9 (⊤ → (𝐻f · (((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))) = ((𝐻f · ((ℕ × {1}) ∘f + 𝐺)) ∘f − (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))))
97 basel.k . . . . . . . . . 10 𝐾 = (𝐻f · ((ℕ × {1}) ∘f + 𝐺))
9897, 76oveq12i 7151 . . . . . . . . 9 (𝐾f𝐽) = ((𝐻f · ((ℕ × {1}) ∘f + 𝐺)) ∘f − (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))))
9996, 98eqtr4di 2854 . . . . . . . 8 (⊤ → (𝐻f · (((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))) = (𝐾f𝐽))
10035recni 10648 . . . . . . . . . . . . . 14 ((π↑2) / 6) ∈ ℂ
1011eqimss2i 3977 . . . . . . . . . . . . . . 15 (ℤ‘1) ⊆ ℕ
102101, 56climconst2 14901 . . . . . . . . . . . . . 14 ((((π↑2) / 6) ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {((π↑2) / 6)}) ⇝ ((π↑2) / 6))
103100, 2, 102sylancr 590 . . . . . . . . . . . . 13 (⊤ → (ℕ × {((π↑2) / 6)}) ⇝ ((π↑2) / 6))
104 ovexd 7174 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺)) ∈ V)
105 ax-resscn 10587 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
106 fss 6505 . . . . . . . . . . . . . . . 16 (((ℕ × {1}):ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → (ℕ × {1}):ℕ⟶ℂ)
10747, 105, 106sylancl 589 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {1}):ℕ⟶ℂ)
108 fss 6505 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℕ⟶ℂ)
10955, 105, 108sylancl 589 . . . . . . . . . . . . . . 15 (⊤ → 𝐺:ℕ⟶ℂ)
110 ofnegsub 11627 . . . . . . . . . . . . . . 15 ((ℕ ∈ V ∧ (ℕ × {1}):ℕ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → ((ℕ × {1}) ∘f + ((ℕ × {-1}) ∘f · 𝐺)) = ((ℕ × {1}) ∘f𝐺))
11156, 107, 109, 110mp3an2i 1463 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {-1}) ∘f · 𝐺)) = ((ℕ × {1}) ∘f𝐺))
112 neg1cn 11743 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
11354, 112basellem7 25676 . . . . . . . . . . . . . 14 ((ℕ × {1}) ∘f + ((ℕ × {-1}) ∘f · 𝐺)) ⇝ 1
114111, 113eqbrtrrdi 5073 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {1}) ∘f𝐺) ⇝ 1)
11539ffvelrnda 6832 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) ∈ ℝ)
116115recnd 10662 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) ∈ ℂ)
11759ffvelrnda 6832 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f𝐺)‘𝑘) ∈ ℝ)
118117recnd 10662 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f𝐺)‘𝑘) ∈ ℂ)
11939ffnd 6492 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {((π↑2) / 6)}) Fn ℕ)
120 fnconstg 6545 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → (ℕ × {1}) Fn ℕ)
1212, 120syl 17 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {1}) Fn ℕ)
12255ffnd 6492 . . . . . . . . . . . . . . 15 (⊤ → 𝐺 Fn ℕ)
123121, 122, 57, 57, 58offn 7404 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {1}) ∘f𝐺) Fn ℕ)
124 eqidd 2802 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) = ((ℕ × {((π↑2) / 6)})‘𝑘))
125 eqidd 2802 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f𝐺)‘𝑘) = (((ℕ × {1}) ∘f𝐺)‘𝑘))
126119, 123, 57, 57, 58, 124, 125ofval 7402 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺))‘𝑘) = (((ℕ × {((π↑2) / 6)})‘𝑘) · (((ℕ × {1}) ∘f𝐺)‘𝑘)))
1271, 2, 103, 104, 114, 116, 118, 126climmul 14985 . . . . . . . . . . . 12 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺)) ⇝ (((π↑2) / 6) · 1))
128100mulid1i 10638 . . . . . . . . . . . 12 (((π↑2) / 6) · 1) = ((π↑2) / 6)
129127, 128breqtrdi 5074 . . . . . . . . . . 11 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺)) ⇝ ((π↑2) / 6))
13061, 129eqbrtrid 5068 . . . . . . . . . 10 (⊤ → 𝐻 ⇝ ((π↑2) / 6))
131 ovexd 7174 . . . . . . . . . 10 (⊤ → (𝐻f · (((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))) ∈ V)
132 3cn 11710 . . . . . . . . . . . . 13 3 ∈ ℂ
133101, 56climconst2 14901 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {3}) ⇝ 3)
134132, 2, 133sylancr 590 . . . . . . . . . . . 12 (⊤ → (ℕ × {3}) ⇝ 3)
135 ovexd 7174 . . . . . . . . . . . 12 (⊤ → ((ℕ × {3}) ∘f · 𝐺) ∈ V)
13654basellem6 25675 . . . . . . . . . . . . 13 𝐺 ⇝ 0
137136a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐺 ⇝ 0)
138 3ex 11711 . . . . . . . . . . . . . . . 16 3 ∈ V
139138fconst 6543 . . . . . . . . . . . . . . 15 (ℕ × {3}):ℕ⟶{3}
140 3re 11709 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
141140a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → 3 ∈ ℝ)
142141snssd 4705 . . . . . . . . . . . . . . 15 (⊤ → {3} ⊆ ℝ)
143 fss 6505 . . . . . . . . . . . . . . 15 (((ℕ × {3}):ℕ⟶{3} ∧ {3} ⊆ ℝ) → (ℕ × {3}):ℕ⟶ℝ)
144139, 142, 143sylancr 590 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {3}):ℕ⟶ℝ)
145144ffvelrnda 6832 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {3})‘𝑘) ∈ ℝ)
146145recnd 10662 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {3})‘𝑘) ∈ ℂ)
14755ffvelrnda 6832 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
148147recnd 10662 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
149144ffnd 6492 . . . . . . . . . . . . 13 (⊤ → (ℕ × {3}) Fn ℕ)
150 eqidd 2802 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {3})‘𝑘) = ((ℕ × {3})‘𝑘))
151 eqidd 2802 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
152149, 122, 57, 57, 58, 150, 151ofval 7402 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘f · 𝐺)‘𝑘) = (((ℕ × {3})‘𝑘) · (𝐺𝑘)))
1531, 2, 134, 135, 137, 146, 148, 152climmul 14985 . . . . . . . . . . 11 (⊤ → ((ℕ × {3}) ∘f · 𝐺) ⇝ (3 · 0))
154132mul01i 10823 . . . . . . . . . . 11 (3 · 0) = 0
155153, 154breqtrdi 5074 . . . . . . . . . 10 (⊤ → ((ℕ × {3}) ∘f · 𝐺) ⇝ 0)
15663ffvelrnda 6832 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
157156recnd 10662 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
15827, 144, 55, 57, 57, 58off 7408 . . . . . . . . . . . 12 (⊤ → ((ℕ × {3}) ∘f · 𝐺):ℕ⟶ℝ)
159158ffvelrnda 6832 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘f · 𝐺)‘𝑘) ∈ ℝ)
160159recnd 10662 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘f · 𝐺)‘𝑘) ∈ ℂ)
16163ffnd 6492 . . . . . . . . . . 11 (⊤ → 𝐻 Fn ℕ)
16241, 89, 74, 57, 57, 58off 7408 . . . . . . . . . . . 12 (⊤ → (((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))):ℕ⟶ℝ)
163162ffnd 6492 . . . . . . . . . . 11 (⊤ → (((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) Fn ℕ)
164 eqidd 2802 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐻𝑘))
165148mulid2d 10652 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 · (𝐺𝑘)) = (𝐺𝑘))
166 2cn 11704 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
167 mulneg1 11069 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝐺𝑘) ∈ ℂ) → (-2 · (𝐺𝑘)) = -(2 · (𝐺𝑘)))
168166, 148, 167sylancr 590 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (-2 · (𝐺𝑘)) = -(2 · (𝐺𝑘)))
169168negeqd 10873 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → -(-2 · (𝐺𝑘)) = --(2 · (𝐺𝑘)))
170 mulcl 10614 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝐺𝑘) ∈ ℂ) → (2 · (𝐺𝑘)) ∈ ℂ)
171166, 148, 170sylancr 590 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · (𝐺𝑘)) ∈ ℂ)
172171negnegd 10981 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → --(2 · (𝐺𝑘)) = (2 · (𝐺𝑘)))
173169, 172eqtr2d 2837 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · (𝐺𝑘)) = -(-2 · (𝐺𝑘)))
174165, 173oveq12d 7157 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))) = ((𝐺𝑘) + -(-2 · (𝐺𝑘))))
175 remulcl 10615 . . . . . . . . . . . . . . . . 17 ((-2 ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → (-2 · (𝐺𝑘)) ∈ ℝ)
17668, 147, 175sylancr 590 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (-2 · (𝐺𝑘)) ∈ ℝ)
177176recnd 10662 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (-2 · (𝐺𝑘)) ∈ ℂ)
178148, 177negsubd 10996 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + -(-2 · (𝐺𝑘))) = ((𝐺𝑘) − (-2 · (𝐺𝑘))))
179174, 178eqtrd 2836 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))) = ((𝐺𝑘) − (-2 · (𝐺𝑘))))
180 df-3 11693 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
181 ax-1cn 10588 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
182166, 181addcomi 10824 . . . . . . . . . . . . . . . 16 (2 + 1) = (1 + 2)
183180, 182eqtri 2824 . . . . . . . . . . . . . . 15 3 = (1 + 2)
184183oveq1i 7149 . . . . . . . . . . . . . 14 (3 · (𝐺𝑘)) = ((1 + 2) · (𝐺𝑘))
185 1cnd 10629 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
186166a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
187185, 186, 148adddird 10659 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 + 2) · (𝐺𝑘)) = ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))))
188184, 187syl5eq 2848 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (3 · (𝐺𝑘)) = ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))))
189185, 148, 177pnpcand 11027 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 + (𝐺𝑘)) − (1 + (-2 · (𝐺𝑘)))) = ((𝐺𝑘) − (-2 · (𝐺𝑘))))
190179, 188, 1893eqtr4rd 2847 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 + (𝐺𝑘)) − (1 + (-2 · (𝐺𝑘)))) = (3 · (𝐺𝑘)))
191121, 122, 57, 57, 58offn 7404 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {1}) ∘f + 𝐺) Fn ℕ)
19212a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → -2 ∈ ℤ)
193 fnconstg 6545 . . . . . . . . . . . . . . . 16 (-2 ∈ ℤ → (ℕ × {-2}) Fn ℕ)
194192, 193syl 17 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {-2}) Fn ℕ)
195194, 122, 57, 57, 58offn 7404 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {-2}) ∘f · 𝐺) Fn ℕ)
196121, 195, 57, 57, 58offn 7404 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)) Fn ℕ)
19757, 44, 122, 151ofc1 7416 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f + 𝐺)‘𝑘) = (1 + (𝐺𝑘)))
19857, 69, 122, 151ofc1 7416 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {-2}) ∘f · 𝐺)‘𝑘) = (-2 · (𝐺𝑘)))
19957, 44, 195, 198ofc1 7416 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))‘𝑘) = (1 + (-2 · (𝐺𝑘))))
200191, 196, 57, 57, 58, 197, 199ofval 7402 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))‘𝑘) = ((1 + (𝐺𝑘)) − (1 + (-2 · (𝐺𝑘)))))
20157, 141, 122, 151ofc1 7416 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘f · 𝐺)‘𝑘) = (3 · (𝐺𝑘)))
202190, 200, 2013eqtr4d 2846 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))‘𝑘) = (((ℕ × {3}) ∘f · 𝐺)‘𝑘))
203161, 163, 57, 57, 58, 164, 202ofval 7402 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐻f · (((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))))‘𝑘) = ((𝐻𝑘) · (((ℕ × {3}) ∘f · 𝐺)‘𝑘)))
2041, 2, 130, 131, 155, 157, 160, 203climmul 14985 . . . . . . . . 9 (⊤ → (𝐻f · (((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))) ⇝ (((π↑2) / 6) · 0))
205100mul01i 10823 . . . . . . . . 9 (((π↑2) / 6) · 0) = 0
206204, 205breqtrdi 5074 . . . . . . . 8 (⊤ → (𝐻f · (((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))) ⇝ 0)
20799, 206eqbrtrrd 5057 . . . . . . 7 (⊤ → (𝐾f𝐽) ⇝ 0)
208 ovexd 7174 . . . . . . 7 (⊤ → (𝐹f𝐽) ∈ V)
20927, 63, 89, 57, 57, 58off 7408 . . . . . . . . . 10 (⊤ → (𝐻f · ((ℕ × {1}) ∘f + 𝐺)):ℕ⟶ℝ)
21097feq1i 6482 . . . . . . . . . 10 (𝐾:ℕ⟶ℝ ↔ (𝐻f · ((ℕ × {1}) ∘f + 𝐺)):ℕ⟶ℝ)
211209, 210sylibr 237 . . . . . . . . 9 (⊤ → 𝐾:ℕ⟶ℝ)
21241, 211, 78, 57, 57, 58off 7408 . . . . . . . 8 (⊤ → (𝐾f𝐽):ℕ⟶ℝ)
213212ffvelrnda 6832 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐾f𝐽)‘𝑘) ∈ ℝ)
21441, 23, 78, 57, 57, 58off 7408 . . . . . . . 8 (⊤ → (𝐹f𝐽):ℕ⟶ℝ)
215214ffvelrnda 6832 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹f𝐽)‘𝑘) ∈ ℝ)
21623ffvelrnda 6832 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
217211ffvelrnda 6832 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℝ)
21878ffvelrnda 6832 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℝ)
219 eqid 2801 . . . . . . . . . . . 12 ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)
22054, 21, 61, 76, 97, 219basellem8 25677 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐽𝑘) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐾𝑘)))
221220adantl 485 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐽𝑘) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐾𝑘)))
222221simprd 499 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐾𝑘))
223216, 217, 218, 222lesub1dd 11249 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐽𝑘)) ≤ ((𝐾𝑘) − (𝐽𝑘)))
22423ffnd 6492 . . . . . . . . 9 (⊤ → 𝐹 Fn ℕ)
22578ffnd 6492 . . . . . . . . 9 (⊤ → 𝐽 Fn ℕ)
226 eqidd 2802 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
227 eqidd 2802 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) = (𝐽𝑘))
228224, 225, 57, 57, 58, 226, 227ofval 7402 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹f𝐽)‘𝑘) = ((𝐹𝑘) − (𝐽𝑘)))
229211ffnd 6492 . . . . . . . . 9 (⊤ → 𝐾 Fn ℕ)
230 eqidd 2802 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐾𝑘) = (𝐾𝑘))
231229, 225, 57, 57, 58, 230, 227ofval 7402 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐾f𝐽)‘𝑘) = ((𝐾𝑘) − (𝐽𝑘)))
232223, 228, 2313brtr4d 5065 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹f𝐽)‘𝑘) ≤ ((𝐾f𝐽)‘𝑘))
233221simpld 498 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) ≤ (𝐹𝑘))
234216, 218subge0d 11223 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑘) − (𝐽𝑘)) ↔ (𝐽𝑘) ≤ (𝐹𝑘)))
235233, 234mpbird 260 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘) − (𝐽𝑘)))
236235, 228breqtrrd 5061 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹f𝐽)‘𝑘))
2371, 2, 207, 208, 213, 215, 232, 236climsqz2 14994 . . . . . 6 (⊤ → (𝐹f𝐽) ⇝ 0)
238 ovexd 7174 . . . . . 6 (⊤ → ((𝐹f𝐽) ∘f + 𝐽) ∈ V)
239 ovexd 7174 . . . . . . . . 9 (⊤ → (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) ∈ V)
24068recni 10648 . . . . . . . . . . 11 -2 ∈ ℂ
24154, 240basellem7 25676 . . . . . . . . . 10 ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)) ⇝ 1
242241a1i 11 . . . . . . . . 9 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)) ⇝ 1)
24374ffvelrnda 6832 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))‘𝑘) ∈ ℝ)
244243recnd 10662 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))‘𝑘) ∈ ℂ)
245 eqidd 2802 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))‘𝑘) = (((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))‘𝑘))
246161, 196, 57, 57, 58, 164, 245ofval 7402 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))‘𝑘) = ((𝐻𝑘) · (((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))‘𝑘)))
2471, 2, 130, 239, 242, 157, 244, 246climmul 14985 . . . . . . . 8 (⊤ → (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) ⇝ (((π↑2) / 6) · 1))
248247, 128breqtrdi 5074 . . . . . . 7 (⊤ → (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) ⇝ ((π↑2) / 6))
24976, 248eqbrtrid 5068 . . . . . 6 (⊤ → 𝐽 ⇝ ((π↑2) / 6))
250215recnd 10662 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹f𝐽)‘𝑘) ∈ ℂ)
251218recnd 10662 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℂ)
252214ffnd 6492 . . . . . . 7 (⊤ → (𝐹f𝐽) Fn ℕ)
253 eqidd 2802 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹f𝐽)‘𝑘) = ((𝐹f𝐽)‘𝑘))
254252, 225, 57, 57, 58, 253, 227ofval 7402 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((𝐹f𝐽) ∘f + 𝐽)‘𝑘) = (((𝐹f𝐽)‘𝑘) + (𝐽𝑘)))
2551, 2, 237, 238, 249, 250, 251, 254climadd 14984 . . . . 5 (⊤ → ((𝐹f𝐽) ∘f + 𝐽) ⇝ (0 + ((π↑2) / 6)))
25688, 255eqbrtrrd 5057 . . . 4 (⊤ → 𝐹 ⇝ (0 + ((π↑2) / 6)))
257100addid2i 10821 . . . 4 (0 + ((π↑2) / 6)) = ((π↑2) / 6)
258256, 21, 2573brtr3g 5066 . . 3 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))) ⇝ ((π↑2) / 6))
2591, 2, 7, 19, 258isumclim 15108 . 2 (⊤ → Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6))
260259mptru 1545 1 Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ⊤wtru 1539   ∈ wcel 2112  Vcvv 3444   ⊆ wss 3884  {csn 4528   class class class wbr 5033   ↦ cmpt 5113   × cxp 5521   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ∘f cof 7391  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   ≤ cle 10669   − cmin 10863  -cneg 10864   / cdiv 11290  ℕcn 11629  2c2 11684  3c3 11685  6c6 11688  ℤcz 11973  ℤ≥cuz 12235  seqcseq 13368  ↑cexp 13429   ⇝ cli 14837  Σcsu 15038  πcpi 15416 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-tan 15421  df-pi 15422  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-0p 24278  df-limc 24473  df-dv 24474  df-ply 24789  df-idp 24790  df-coe 24791  df-dgr 24792  df-quot 24891 This theorem is referenced by:  basel  25679
 Copyright terms: Public domain W3C validator