Step | Hyp | Ref
| Expression |
1 | | nnuz 12550 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12281 |
. . 3
⊢ (⊤
→ 1 ∈ ℤ) |
3 | | oveq1 7262 |
. . . . 5
⊢ (𝑛 = 𝑘 → (𝑛↑-2) = (𝑘↑-2)) |
4 | | eqid 2738 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ (𝑛↑-2)) = (𝑛 ∈ ℕ ↦ (𝑛↑-2)) |
5 | | ovex 7288 |
. . . . 5
⊢ (𝑘↑-2) ∈
V |
6 | 3, 4, 5 | fvmpt 6857 |
. . . 4
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2)) |
7 | 6 | adantl 481 |
. . 3
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2)) |
8 | | nnre 11910 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
9 | | nnne0 11937 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
10 | | 2z 12282 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
11 | | znegcl 12285 |
. . . . . . . . . . 11
⊢ (2 ∈
ℤ → -2 ∈ ℤ) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . . . 10
⊢ -2 ∈
ℤ |
13 | 12 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → -2 ∈
ℤ) |
14 | 8, 9, 13 | reexpclzd 13892 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → (𝑛↑-2) ∈
ℝ) |
15 | 14 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (𝑛↑-2) ∈ ℝ) |
16 | 15, 4 | fmptd 6970 |
. . . . . 6
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (𝑛↑-2)):ℕ⟶ℝ) |
17 | 16 | ffvelrnda 6943 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (𝑛↑-2))‘𝑘) ∈ ℝ) |
18 | 7, 17 | eqeltrrd 2840 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝑘↑-2) ∈ ℝ) |
19 | 18 | recnd 10934 |
. . 3
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝑘↑-2) ∈ ℂ) |
20 | 1, 2, 17 | serfre 13680 |
. . . . . . . . . . 11
⊢ (⊤
→ seq1( + , (𝑛 ∈
ℕ ↦ (𝑛↑-2))):ℕ⟶ℝ) |
21 | | basel.f |
. . . . . . . . . . . 12
⊢ 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))) |
22 | 21 | feq1i 6575 |
. . . . . . . . . . 11
⊢ (𝐹:ℕ⟶ℝ ↔
seq1( + , (𝑛 ∈ ℕ
↦ (𝑛↑-2))):ℕ⟶ℝ) |
23 | 20, 22 | sylibr 233 |
. . . . . . . . . 10
⊢ (⊤
→ 𝐹:ℕ⟶ℝ) |
24 | 23 | ffvelrnda 6943 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (𝐹‘𝑛) ∈ ℝ) |
25 | 24 | recnd 10934 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (𝐹‘𝑛) ∈ ℂ) |
26 | | remulcl 10887 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
27 | 26 | adantl 481 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ (𝑥
∈ ℝ ∧ 𝑦
∈ ℝ)) → (𝑥
· 𝑦) ∈
ℝ) |
28 | | ovex 7288 |
. . . . . . . . . . . . . . . 16
⊢
((π↑2) / 6) ∈ V |
29 | 28 | fconst 6644 |
. . . . . . . . . . . . . . 15
⊢ (ℕ
× {((π↑2) / 6)}):ℕ⟶{((π↑2) /
6)} |
30 | | pire 25520 |
. . . . . . . . . . . . . . . . . . 19
⊢ π
∈ ℝ |
31 | 30 | resqcli 13831 |
. . . . . . . . . . . . . . . . . 18
⊢
(π↑2) ∈ ℝ |
32 | | 6re 11993 |
. . . . . . . . . . . . . . . . . 18
⊢ 6 ∈
ℝ |
33 | | 6nn 11992 |
. . . . . . . . . . . . . . . . . . 19
⊢ 6 ∈
ℕ |
34 | 33 | nnne0i 11943 |
. . . . . . . . . . . . . . . . . 18
⊢ 6 ≠
0 |
35 | 31, 32, 34 | redivcli 11672 |
. . . . . . . . . . . . . . . . 17
⊢
((π↑2) / 6) ∈ ℝ |
36 | 35 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ ((π↑2) / 6) ∈ ℝ) |
37 | 36 | snssd 4739 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ {((π↑2) / 6)} ⊆ ℝ) |
38 | | fss 6601 |
. . . . . . . . . . . . . . 15
⊢
(((ℕ × {((π↑2) / 6)}):ℕ⟶{((π↑2)
/ 6)} ∧ {((π↑2) / 6)} ⊆ ℝ) → (ℕ ×
{((π↑2) / 6)}):ℕ⟶ℝ) |
39 | 29, 37, 38 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (ℕ × {((π↑2) /
6)}):ℕ⟶ℝ) |
40 | | resubcl 11215 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) |
41 | 40 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ (𝑥
∈ ℝ ∧ 𝑦
∈ ℝ)) → (𝑥
− 𝑦) ∈
ℝ) |
42 | | 1ex 10902 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
V |
43 | 42 | fconst 6644 |
. . . . . . . . . . . . . . . 16
⊢ (ℕ
× {1}):ℕ⟶{1} |
44 | | 1red 10907 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ 1 ∈ ℝ) |
45 | 44 | snssd 4739 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ {1} ⊆ ℝ) |
46 | | fss 6601 |
. . . . . . . . . . . . . . . 16
⊢
(((ℕ × {1}):ℕ⟶{1} ∧ {1} ⊆ ℝ)
→ (ℕ × {1}):ℕ⟶ℝ) |
47 | 43, 45, 46 | sylancr 586 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (ℕ × {1}):ℕ⟶ℝ) |
48 | | 2nn 11976 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℕ |
49 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (⊤
→ 2 ∈ ℕ) |
50 | | nnmulcl 11927 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ) → (2 · 𝑛) ∈ ℕ) |
51 | 49, 50 | sylan 579 |
. . . . . . . . . . . . . . . . . 18
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (2 · 𝑛) ∈ ℕ) |
52 | 51 | peano2nnd 11920 |
. . . . . . . . . . . . . . . . 17
⊢
((⊤ ∧ 𝑛
∈ ℕ) → ((2 · 𝑛) + 1) ∈ ℕ) |
53 | 52 | nnrecred 11954 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ) |
54 | | basel.g |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 ·
𝑛) + 1))) |
55 | 53, 54 | fmptd 6970 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ 𝐺:ℕ⟶ℝ) |
56 | | nnex 11909 |
. . . . . . . . . . . . . . . 16
⊢ ℕ
∈ V |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ ℕ ∈ V) |
58 | | inidm 4149 |
. . . . . . . . . . . . . . 15
⊢ (ℕ
∩ ℕ) = ℕ |
59 | 41, 47, 55, 57, 57, 58 | off 7529 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ ((ℕ × {1}) ∘f − 𝐺):ℕ⟶ℝ) |
60 | 27, 39, 59, 57, 57, 58 | off 7529 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ((ℕ × {((π↑2) / 6)}) ∘f ·
((ℕ × {1}) ∘f − 𝐺)):ℕ⟶ℝ) |
61 | | basel.h |
. . . . . . . . . . . . . 14
⊢ 𝐻 = ((ℕ ×
{((π↑2) / 6)}) ∘f · ((ℕ × {1})
∘f − 𝐺)) |
62 | 61 | feq1i 6575 |
. . . . . . . . . . . . 13
⊢ (𝐻:ℕ⟶ℝ ↔
((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ
× {1}) ∘f − 𝐺)):ℕ⟶ℝ) |
63 | 60, 62 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (⊤
→ 𝐻:ℕ⟶ℝ) |
64 | | readdcl 10885 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
65 | 64 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ (𝑥
∈ ℝ ∧ 𝑦
∈ ℝ)) → (𝑥
+ 𝑦) ∈
ℝ) |
66 | | negex 11149 |
. . . . . . . . . . . . . . . 16
⊢ -2 ∈
V |
67 | 66 | fconst 6644 |
. . . . . . . . . . . . . . 15
⊢ (ℕ
× {-2}):ℕ⟶{-2} |
68 | 12 | zrei 12255 |
. . . . . . . . . . . . . . . . 17
⊢ -2 ∈
ℝ |
69 | 68 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ -2 ∈ ℝ) |
70 | 69 | snssd 4739 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ {-2} ⊆ ℝ) |
71 | | fss 6601 |
. . . . . . . . . . . . . . 15
⊢
(((ℕ × {-2}):ℕ⟶{-2} ∧ {-2} ⊆ ℝ)
→ (ℕ × {-2}):ℕ⟶ℝ) |
72 | 67, 70, 71 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (ℕ × {-2}):ℕ⟶ℝ) |
73 | 27, 72, 55, 57, 57, 58 | off 7529 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ((ℕ × {-2}) ∘f · 𝐺):ℕ⟶ℝ) |
74 | 65, 47, 73, 57, 57, 58 | off 7529 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)):ℕ⟶ℝ) |
75 | 27, 63, 74, 57, 57, 58 | off 7529 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝐻
∘f · ((ℕ × {1}) ∘f +
((ℕ × {-2}) ∘f · 𝐺))):ℕ⟶ℝ) |
76 | | basel.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (𝐻 ∘f · ((ℕ
× {1}) ∘f + ((ℕ × {-2}) ∘f
· 𝐺))) |
77 | 76 | feq1i 6575 |
. . . . . . . . . . 11
⊢ (𝐽:ℕ⟶ℝ ↔
(𝐻 ∘f
· ((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺))):ℕ⟶ℝ) |
78 | 75, 77 | sylibr 233 |
. . . . . . . . . 10
⊢ (⊤
→ 𝐽:ℕ⟶ℝ) |
79 | 78 | ffvelrnda 6943 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (𝐽‘𝑛) ∈ ℝ) |
80 | 79 | recnd 10934 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (𝐽‘𝑛) ∈ ℂ) |
81 | 25, 80 | npcand 11266 |
. . . . . . 7
⊢
((⊤ ∧ 𝑛
∈ ℕ) → (((𝐹‘𝑛) − (𝐽‘𝑛)) + (𝐽‘𝑛)) = (𝐹‘𝑛)) |
82 | 81 | mpteq2dva 5170 |
. . . . . 6
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (((𝐹‘𝑛) − (𝐽‘𝑛)) + (𝐽‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹‘𝑛))) |
83 | | ovexd 7290 |
. . . . . . 7
⊢
((⊤ ∧ 𝑛
∈ ℕ) → ((𝐹‘𝑛) − (𝐽‘𝑛)) ∈ V) |
84 | 23 | feqmptd 6819 |
. . . . . . . 8
⊢ (⊤
→ 𝐹 = (𝑛 ∈ ℕ ↦ (𝐹‘𝑛))) |
85 | 78 | feqmptd 6819 |
. . . . . . . 8
⊢ (⊤
→ 𝐽 = (𝑛 ∈ ℕ ↦ (𝐽‘𝑛))) |
86 | 57, 24, 79, 84, 85 | offval2 7531 |
. . . . . . 7
⊢ (⊤
→ (𝐹
∘f − 𝐽) = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) − (𝐽‘𝑛)))) |
87 | 57, 83, 79, 86, 85 | offval2 7531 |
. . . . . 6
⊢ (⊤
→ ((𝐹
∘f − 𝐽) ∘f + 𝐽) = (𝑛 ∈ ℕ ↦ (((𝐹‘𝑛) − (𝐽‘𝑛)) + (𝐽‘𝑛)))) |
88 | 82, 87, 84 | 3eqtr4d 2788 |
. . . . 5
⊢ (⊤
→ ((𝐹
∘f − 𝐽) ∘f + 𝐽) = 𝐹) |
89 | 65, 47, 55, 57, 57, 58 | off 7529 |
. . . . . . . . . 10
⊢ (⊤
→ ((ℕ × {1}) ∘f + 𝐺):ℕ⟶ℝ) |
90 | | recn 10892 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
91 | | recn 10892 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
92 | | recn 10892 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℝ → 𝑧 ∈
ℂ) |
93 | | subdi 11338 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 − 𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧))) |
94 | 90, 91, 92, 93 | syl3an 1158 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 · (𝑦 − 𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧))) |
95 | 94 | adantl 481 |
. . . . . . . . . 10
⊢
((⊤ ∧ (𝑥
∈ ℝ ∧ 𝑦
∈ ℝ ∧ 𝑧
∈ ℝ)) → (𝑥
· (𝑦 − 𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧))) |
96 | 57, 63, 89, 74, 95 | caofdi 7550 |
. . . . . . . . 9
⊢ (⊤
→ (𝐻
∘f · (((ℕ × {1}) ∘f +
𝐺) ∘f
− ((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)))) = ((𝐻 ∘f · ((ℕ
× {1}) ∘f + 𝐺)) ∘f − (𝐻 ∘f ·
((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺))))) |
97 | | basel.k |
. . . . . . . . . 10
⊢ 𝐾 = (𝐻 ∘f · ((ℕ
× {1}) ∘f + 𝐺)) |
98 | 97, 76 | oveq12i 7267 |
. . . . . . . . 9
⊢ (𝐾 ∘f −
𝐽) = ((𝐻 ∘f · ((ℕ
× {1}) ∘f + 𝐺)) ∘f − (𝐻 ∘f ·
((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)))) |
99 | 96, 98 | eqtr4di 2797 |
. . . . . . . 8
⊢ (⊤
→ (𝐻
∘f · (((ℕ × {1}) ∘f +
𝐺) ∘f
− ((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)))) = (𝐾 ∘f − 𝐽)) |
100 | 35 | recni 10920 |
. . . . . . . . . . . . . 14
⊢
((π↑2) / 6) ∈ ℂ |
101 | 1 | eqimss2i 3976 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘1) ⊆ ℕ |
102 | 101, 56 | climconst2 15185 |
. . . . . . . . . . . . . 14
⊢
((((π↑2) / 6) ∈ ℂ ∧ 1 ∈ ℤ) →
(ℕ × {((π↑2) / 6)}) ⇝ ((π↑2) /
6)) |
103 | 100, 2, 102 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (ℕ × {((π↑2) / 6)}) ⇝ ((π↑2) /
6)) |
104 | | ovexd 7290 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ((ℕ × {((π↑2) / 6)}) ∘f ·
((ℕ × {1}) ∘f − 𝐺)) ∈ V) |
105 | | ax-resscn 10859 |
. . . . . . . . . . . . . . . 16
⊢ ℝ
⊆ ℂ |
106 | | fss 6601 |
. . . . . . . . . . . . . . . 16
⊢
(((ℕ × {1}):ℕ⟶ℝ ∧ ℝ ⊆
ℂ) → (ℕ × {1}):ℕ⟶ℂ) |
107 | 47, 105, 106 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (ℕ × {1}):ℕ⟶ℂ) |
108 | | fss 6601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:ℕ⟶ℝ ∧
ℝ ⊆ ℂ) → 𝐺:ℕ⟶ℂ) |
109 | 55, 105, 108 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ 𝐺:ℕ⟶ℂ) |
110 | | ofnegsub 11901 |
. . . . . . . . . . . . . . 15
⊢ ((ℕ
∈ V ∧ (ℕ × {1}):ℕ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) →
((ℕ × {1}) ∘f + ((ℕ × {-1})
∘f · 𝐺)) = ((ℕ × {1})
∘f − 𝐺)) |
111 | 56, 107, 109, 110 | mp3an2i 1464 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ ((ℕ × {1}) ∘f + ((ℕ × {-1})
∘f · 𝐺)) = ((ℕ × {1})
∘f − 𝐺)) |
112 | | neg1cn 12017 |
. . . . . . . . . . . . . . 15
⊢ -1 ∈
ℂ |
113 | 54, 112 | basellem7 26141 |
. . . . . . . . . . . . . 14
⊢ ((ℕ
× {1}) ∘f + ((ℕ × {-1}) ∘f
· 𝐺)) ⇝
1 |
114 | 111, 113 | eqbrtrrdi 5110 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ((ℕ × {1}) ∘f − 𝐺) ⇝ 1) |
115 | 39 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) ∈
ℝ) |
116 | 115 | recnd 10934 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) ∈
ℂ) |
117 | 59 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {1}) ∘f −
𝐺)‘𝑘) ∈ ℝ) |
118 | 117 | recnd 10934 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {1}) ∘f −
𝐺)‘𝑘) ∈ ℂ) |
119 | 39 | ffnd 6585 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (ℕ × {((π↑2) / 6)}) Fn ℕ) |
120 | | fnconstg 6646 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
ℤ → (ℕ × {1}) Fn ℕ) |
121 | 2, 120 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (ℕ × {1}) Fn ℕ) |
122 | 55 | ffnd 6585 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ 𝐺 Fn
ℕ) |
123 | 121, 122,
57, 57, 58 | offn 7524 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ ((ℕ × {1}) ∘f − 𝐺) Fn ℕ) |
124 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) = ((ℕ ×
{((π↑2) / 6)})‘𝑘)) |
125 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {1}) ∘f −
𝐺)‘𝑘) = (((ℕ × {1})
∘f − 𝐺)‘𝑘)) |
126 | 119, 123,
57, 57, 58, 124, 125 | ofval 7522 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {((π↑2) / 6)})
∘f · ((ℕ × {1}) ∘f −
𝐺))‘𝑘) = (((ℕ ×
{((π↑2) / 6)})‘𝑘) · (((ℕ × {1})
∘f − 𝐺)‘𝑘))) |
127 | 1, 2, 103, 104, 114, 116, 118, 126 | climmul 15270 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((ℕ × {((π↑2) / 6)}) ∘f ·
((ℕ × {1}) ∘f − 𝐺)) ⇝ (((π↑2) / 6) ·
1)) |
128 | 100 | mulid1i 10910 |
. . . . . . . . . . . 12
⊢
(((π↑2) / 6) · 1) = ((π↑2) / 6) |
129 | 127, 128 | breqtrdi 5111 |
. . . . . . . . . . 11
⊢ (⊤
→ ((ℕ × {((π↑2) / 6)}) ∘f ·
((ℕ × {1}) ∘f − 𝐺)) ⇝ ((π↑2) /
6)) |
130 | 61, 129 | eqbrtrid 5105 |
. . . . . . . . . 10
⊢ (⊤
→ 𝐻 ⇝
((π↑2) / 6)) |
131 | | ovexd 7290 |
. . . . . . . . . 10
⊢ (⊤
→ (𝐻
∘f · (((ℕ × {1}) ∘f +
𝐺) ∘f
− ((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)))) ∈ V) |
132 | | 3cn 11984 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℂ |
133 | 101, 56 | climconst2 15185 |
. . . . . . . . . . . . 13
⊢ ((3
∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {3}) ⇝
3) |
134 | 132, 2, 133 | sylancr 586 |
. . . . . . . . . . . 12
⊢ (⊤
→ (ℕ × {3}) ⇝ 3) |
135 | | ovexd 7290 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((ℕ × {3}) ∘f · 𝐺) ∈ V) |
136 | 54 | basellem6 26140 |
. . . . . . . . . . . . 13
⊢ 𝐺 ⇝ 0 |
137 | 136 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ 𝐺 ⇝
0) |
138 | | 3ex 11985 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
V |
139 | 138 | fconst 6644 |
. . . . . . . . . . . . . . 15
⊢ (ℕ
× {3}):ℕ⟶{3} |
140 | | 3re 11983 |
. . . . . . . . . . . . . . . . 17
⊢ 3 ∈
ℝ |
141 | 140 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ 3 ∈ ℝ) |
142 | 141 | snssd 4739 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ {3} ⊆ ℝ) |
143 | | fss 6601 |
. . . . . . . . . . . . . . 15
⊢
(((ℕ × {3}):ℕ⟶{3} ∧ {3} ⊆ ℝ)
→ (ℕ × {3}):ℕ⟶ℝ) |
144 | 139, 142,
143 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (ℕ × {3}):ℕ⟶ℝ) |
145 | 144 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((ℕ × {3})‘𝑘) ∈ ℝ) |
146 | 145 | recnd 10934 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((ℕ × {3})‘𝑘) ∈ ℂ) |
147 | 55 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
148 | 147 | recnd 10934 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℂ) |
149 | 144 | ffnd 6585 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (ℕ × {3}) Fn ℕ) |
150 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((ℕ × {3})‘𝑘) = ((ℕ × {3})‘𝑘)) |
151 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) = (𝐺‘𝑘)) |
152 | 149, 122,
57, 57, 58, 150, 151 | ofval 7522 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {3}) ∘f ·
𝐺)‘𝑘) = (((ℕ × {3})‘𝑘) · (𝐺‘𝑘))) |
153 | 1, 2, 134, 135, 137, 146, 148, 152 | climmul 15270 |
. . . . . . . . . . 11
⊢ (⊤
→ ((ℕ × {3}) ∘f · 𝐺) ⇝ (3 · 0)) |
154 | 132 | mul01i 11095 |
. . . . . . . . . . 11
⊢ (3
· 0) = 0 |
155 | 153, 154 | breqtrdi 5111 |
. . . . . . . . . 10
⊢ (⊤
→ ((ℕ × {3}) ∘f · 𝐺) ⇝ 0) |
156 | 63 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐻‘𝑘) ∈ ℝ) |
157 | 156 | recnd 10934 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐻‘𝑘) ∈ ℂ) |
158 | 27, 144, 55, 57, 57, 58 | off 7529 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((ℕ × {3}) ∘f · 𝐺):ℕ⟶ℝ) |
159 | 158 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {3}) ∘f ·
𝐺)‘𝑘) ∈ ℝ) |
160 | 159 | recnd 10934 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {3}) ∘f ·
𝐺)‘𝑘) ∈ ℂ) |
161 | 63 | ffnd 6585 |
. . . . . . . . . . 11
⊢ (⊤
→ 𝐻 Fn
ℕ) |
162 | 41, 89, 74, 57, 57, 58 | off 7529 |
. . . . . . . . . . . 12
⊢ (⊤
→ (((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ
× {1}) ∘f + ((ℕ × {-2}) ∘f
· 𝐺))):ℕ⟶ℝ) |
163 | 162 | ffnd 6585 |
. . . . . . . . . . 11
⊢ (⊤
→ (((ℕ × {1}) ∘f + 𝐺) ∘f − ((ℕ
× {1}) ∘f + ((ℕ × {-2}) ∘f
· 𝐺))) Fn
ℕ) |
164 | | eqidd 2739 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐻‘𝑘) = (𝐻‘𝑘)) |
165 | 148 | mulid2d 10924 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 · (𝐺‘𝑘)) = (𝐺‘𝑘)) |
166 | | 2cn 11978 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℂ |
167 | | mulneg1 11341 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℂ ∧ (𝐺‘𝑘) ∈ ℂ) → (-2 · (𝐺‘𝑘)) = -(2 · (𝐺‘𝑘))) |
168 | 166, 148,
167 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (-2 · (𝐺‘𝑘)) = -(2 · (𝐺‘𝑘))) |
169 | 168 | negeqd 11145 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑘
∈ ℕ) → -(-2 · (𝐺‘𝑘)) = --(2 · (𝐺‘𝑘))) |
170 | | mulcl 10886 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℂ ∧ (𝐺‘𝑘) ∈ ℂ) → (2 · (𝐺‘𝑘)) ∈ ℂ) |
171 | 166, 148,
170 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2 · (𝐺‘𝑘)) ∈ ℂ) |
172 | 171 | negnegd 11253 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑘
∈ ℕ) → --(2 · (𝐺‘𝑘)) = (2 · (𝐺‘𝑘))) |
173 | 169, 172 | eqtr2d 2779 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2 · (𝐺‘𝑘)) = -(-2 · (𝐺‘𝑘))) |
174 | 165, 173 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((1 · (𝐺‘𝑘)) + (2 · (𝐺‘𝑘))) = ((𝐺‘𝑘) + -(-2 · (𝐺‘𝑘)))) |
175 | | remulcl 10887 |
. . . . . . . . . . . . . . . . 17
⊢ ((-2
∈ ℝ ∧ (𝐺‘𝑘) ∈ ℝ) → (-2 · (𝐺‘𝑘)) ∈ ℝ) |
176 | 68, 147, 175 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (-2 · (𝐺‘𝑘)) ∈ ℝ) |
177 | 176 | recnd 10934 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (-2 · (𝐺‘𝑘)) ∈ ℂ) |
178 | 148, 177 | negsubd 11268 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐺‘𝑘) + -(-2 · (𝐺‘𝑘))) = ((𝐺‘𝑘) − (-2 · (𝐺‘𝑘)))) |
179 | 174, 178 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((1 · (𝐺‘𝑘)) + (2 · (𝐺‘𝑘))) = ((𝐺‘𝑘) − (-2 · (𝐺‘𝑘)))) |
180 | | df-3 11967 |
. . . . . . . . . . . . . . . 16
⊢ 3 = (2 +
1) |
181 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℂ |
182 | 166, 181 | addcomi 11096 |
. . . . . . . . . . . . . . . 16
⊢ (2 + 1) =
(1 + 2) |
183 | 180, 182 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ 3 = (1 +
2) |
184 | 183 | oveq1i 7265 |
. . . . . . . . . . . . . 14
⊢ (3
· (𝐺‘𝑘)) = ((1 + 2) · (𝐺‘𝑘)) |
185 | | 1cnd 10901 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 1 ∈ ℂ) |
186 | 166 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 2 ∈ ℂ) |
187 | 185, 186,
148 | adddird 10931 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((1 + 2) · (𝐺‘𝑘)) = ((1 · (𝐺‘𝑘)) + (2 · (𝐺‘𝑘)))) |
188 | 184, 187 | syl5eq 2791 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (3 · (𝐺‘𝑘)) = ((1 · (𝐺‘𝑘)) + (2 · (𝐺‘𝑘)))) |
189 | 185, 148,
177 | pnpcand 11299 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((1 + (𝐺‘𝑘)) − (1 + (-2 · (𝐺‘𝑘)))) = ((𝐺‘𝑘) − (-2 · (𝐺‘𝑘)))) |
190 | 179, 188,
189 | 3eqtr4rd 2789 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((1 + (𝐺‘𝑘)) − (1 + (-2 · (𝐺‘𝑘)))) = (3 · (𝐺‘𝑘))) |
191 | 121, 122,
57, 57, 58 | offn 7524 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ((ℕ × {1}) ∘f + 𝐺) Fn ℕ) |
192 | 12 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ -2 ∈ ℤ) |
193 | | fnconstg 6646 |
. . . . . . . . . . . . . . . 16
⊢ (-2
∈ ℤ → (ℕ × {-2}) Fn ℕ) |
194 | 192, 193 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (ℕ × {-2}) Fn ℕ) |
195 | 194, 122,
57, 57, 58 | offn 7524 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ ((ℕ × {-2}) ∘f · 𝐺) Fn ℕ) |
196 | 121, 195,
57, 57, 58 | offn 7524 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)) Fn ℕ) |
197 | 57, 44, 122, 151 | ofc1 7537 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {1}) ∘f + 𝐺)‘𝑘) = (1 + (𝐺‘𝑘))) |
198 | 57, 69, 122, 151 | ofc1 7537 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {-2}) ∘f ·
𝐺)‘𝑘) = (-2 · (𝐺‘𝑘))) |
199 | 57, 44, 195, 198 | ofc1 7537 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ
× {-2}) ∘f · 𝐺))‘𝑘) = (1 + (-2 · (𝐺‘𝑘)))) |
200 | 191, 196,
57, 57, 58, 197, 199 | ofval 7522 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((((ℕ × {1}) ∘f + 𝐺) ∘f −
((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)))‘𝑘) = ((1 + (𝐺‘𝑘)) − (1 + (-2 · (𝐺‘𝑘))))) |
201 | 57, 141, 122, 151 | ofc1 7537 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {3}) ∘f ·
𝐺)‘𝑘) = (3 · (𝐺‘𝑘))) |
202 | 190, 200,
201 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((((ℕ × {1}) ∘f + 𝐺) ∘f −
((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)))‘𝑘) = (((ℕ × {3})
∘f · 𝐺)‘𝑘)) |
203 | 161, 163,
57, 57, 58, 164, 202 | ofval 7522 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐻
∘f · (((ℕ × {1}) ∘f +
𝐺) ∘f
− ((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺))))‘𝑘) = ((𝐻‘𝑘) · (((ℕ × {3})
∘f · 𝐺)‘𝑘))) |
204 | 1, 2, 130, 131, 155, 157, 160, 203 | climmul 15270 |
. . . . . . . . 9
⊢ (⊤
→ (𝐻
∘f · (((ℕ × {1}) ∘f +
𝐺) ∘f
− ((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)))) ⇝ (((π↑2) / 6) ·
0)) |
205 | 100 | mul01i 11095 |
. . . . . . . . 9
⊢
(((π↑2) / 6) · 0) = 0 |
206 | 204, 205 | breqtrdi 5111 |
. . . . . . . 8
⊢ (⊤
→ (𝐻
∘f · (((ℕ × {1}) ∘f +
𝐺) ∘f
− ((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)))) ⇝ 0) |
207 | 99, 206 | eqbrtrrd 5094 |
. . . . . . 7
⊢ (⊤
→ (𝐾
∘f − 𝐽) ⇝ 0) |
208 | | ovexd 7290 |
. . . . . . 7
⊢ (⊤
→ (𝐹
∘f − 𝐽) ∈ V) |
209 | 27, 63, 89, 57, 57, 58 | off 7529 |
. . . . . . . . . 10
⊢ (⊤
→ (𝐻
∘f · ((ℕ × {1}) ∘f + 𝐺)):ℕ⟶ℝ) |
210 | 97 | feq1i 6575 |
. . . . . . . . . 10
⊢ (𝐾:ℕ⟶ℝ ↔
(𝐻 ∘f
· ((ℕ × {1}) ∘f + 𝐺)):ℕ⟶ℝ) |
211 | 209, 210 | sylibr 233 |
. . . . . . . . 9
⊢ (⊤
→ 𝐾:ℕ⟶ℝ) |
212 | 41, 211, 78, 57, 57, 58 | off 7529 |
. . . . . . . 8
⊢ (⊤
→ (𝐾
∘f − 𝐽):ℕ⟶ℝ) |
213 | 212 | ffvelrnda 6943 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐾
∘f − 𝐽)‘𝑘) ∈ ℝ) |
214 | 41, 23, 78, 57, 57, 58 | off 7529 |
. . . . . . . 8
⊢ (⊤
→ (𝐹
∘f − 𝐽):ℕ⟶ℝ) |
215 | 214 | ffvelrnda 6943 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐹
∘f − 𝐽)‘𝑘) ∈ ℝ) |
216 | 23 | ffvelrnda 6943 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
217 | 211 | ffvelrnda 6943 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐾‘𝑘) ∈ ℝ) |
218 | 78 | ffvelrnda 6943 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐽‘𝑘) ∈ ℝ) |
219 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ((2
· 𝑘) + 1) = ((2
· 𝑘) +
1) |
220 | 54, 21, 61, 76, 97, 219 | basellem8 26142 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((𝐽‘𝑘) ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ (𝐾‘𝑘))) |
221 | 220 | adantl 481 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐽‘𝑘) ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ (𝐾‘𝑘))) |
222 | 221 | simprd 495 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) ≤ (𝐾‘𝑘)) |
223 | 216, 217,
218, 222 | lesub1dd 11521 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐹‘𝑘) − (𝐽‘𝑘)) ≤ ((𝐾‘𝑘) − (𝐽‘𝑘))) |
224 | 23 | ffnd 6585 |
. . . . . . . . 9
⊢ (⊤
→ 𝐹 Fn
ℕ) |
225 | 78 | ffnd 6585 |
. . . . . . . . 9
⊢ (⊤
→ 𝐽 Fn
ℕ) |
226 | | eqidd 2739 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
227 | | eqidd 2739 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐽‘𝑘) = (𝐽‘𝑘)) |
228 | 224, 225,
57, 57, 58, 226, 227 | ofval 7522 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐹
∘f − 𝐽)‘𝑘) = ((𝐹‘𝑘) − (𝐽‘𝑘))) |
229 | 211 | ffnd 6585 |
. . . . . . . . 9
⊢ (⊤
→ 𝐾 Fn
ℕ) |
230 | | eqidd 2739 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐾‘𝑘) = (𝐾‘𝑘)) |
231 | 229, 225,
57, 57, 58, 230, 227 | ofval 7522 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐾
∘f − 𝐽)‘𝑘) = ((𝐾‘𝑘) − (𝐽‘𝑘))) |
232 | 223, 228,
231 | 3brtr4d 5102 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐹
∘f − 𝐽)‘𝑘) ≤ ((𝐾 ∘f − 𝐽)‘𝑘)) |
233 | 221 | simpld 494 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐽‘𝑘) ≤ (𝐹‘𝑘)) |
234 | 216, 218 | subge0d 11495 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (0 ≤ ((𝐹‘𝑘) − (𝐽‘𝑘)) ↔ (𝐽‘𝑘) ≤ (𝐹‘𝑘))) |
235 | 233, 234 | mpbird 256 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 0 ≤ ((𝐹‘𝑘) − (𝐽‘𝑘))) |
236 | 235, 228 | breqtrrd 5098 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 0 ≤ ((𝐹 ∘f − 𝐽)‘𝑘)) |
237 | 1, 2, 207, 208, 213, 215, 232, 236 | climsqz2 15279 |
. . . . . 6
⊢ (⊤
→ (𝐹
∘f − 𝐽) ⇝ 0) |
238 | | ovexd 7290 |
. . . . . 6
⊢ (⊤
→ ((𝐹
∘f − 𝐽) ∘f + 𝐽) ∈ V) |
239 | | ovexd 7290 |
. . . . . . . . 9
⊢ (⊤
→ (𝐻
∘f · ((ℕ × {1}) ∘f +
((ℕ × {-2}) ∘f · 𝐺))) ∈ V) |
240 | 68 | recni 10920 |
. . . . . . . . . . 11
⊢ -2 ∈
ℂ |
241 | 54, 240 | basellem7 26141 |
. . . . . . . . . 10
⊢ ((ℕ
× {1}) ∘f + ((ℕ × {-2}) ∘f
· 𝐺)) ⇝
1 |
242 | 241 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ ((ℕ × {1}) ∘f + ((ℕ × {-2})
∘f · 𝐺)) ⇝ 1) |
243 | 74 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ
× {-2}) ∘f · 𝐺))‘𝑘) ∈ ℝ) |
244 | 243 | recnd 10934 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ
× {-2}) ∘f · 𝐺))‘𝑘) ∈ ℂ) |
245 | | eqidd 2739 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ
× {-2}) ∘f · 𝐺))‘𝑘) = (((ℕ × {1})
∘f + ((ℕ × {-2}) ∘f ·
𝐺))‘𝑘)) |
246 | 161, 196,
57, 57, 58, 164, 245 | ofval 7522 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐻
∘f · ((ℕ × {1}) ∘f +
((ℕ × {-2}) ∘f · 𝐺)))‘𝑘) = ((𝐻‘𝑘) · (((ℕ × {1})
∘f + ((ℕ × {-2}) ∘f ·
𝐺))‘𝑘))) |
247 | 1, 2, 130, 239, 242, 157, 244, 246 | climmul 15270 |
. . . . . . . 8
⊢ (⊤
→ (𝐻
∘f · ((ℕ × {1}) ∘f +
((ℕ × {-2}) ∘f · 𝐺))) ⇝ (((π↑2) / 6) ·
1)) |
248 | 247, 128 | breqtrdi 5111 |
. . . . . . 7
⊢ (⊤
→ (𝐻
∘f · ((ℕ × {1}) ∘f +
((ℕ × {-2}) ∘f · 𝐺))) ⇝ ((π↑2) /
6)) |
249 | 76, 248 | eqbrtrid 5105 |
. . . . . 6
⊢ (⊤
→ 𝐽 ⇝
((π↑2) / 6)) |
250 | 215 | recnd 10934 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐹
∘f − 𝐽)‘𝑘) ∈ ℂ) |
251 | 218 | recnd 10934 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐽‘𝑘) ∈ ℂ) |
252 | 214 | ffnd 6585 |
. . . . . . 7
⊢ (⊤
→ (𝐹
∘f − 𝐽) Fn ℕ) |
253 | | eqidd 2739 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝐹
∘f − 𝐽)‘𝑘) = ((𝐹 ∘f − 𝐽)‘𝑘)) |
254 | 252, 225,
57, 57, 58, 253, 227 | ofval 7522 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (((𝐹
∘f − 𝐽) ∘f + 𝐽)‘𝑘) = (((𝐹 ∘f − 𝐽)‘𝑘) + (𝐽‘𝑘))) |
255 | 1, 2, 237, 238, 249, 250, 251, 254 | climadd 15269 |
. . . . 5
⊢ (⊤
→ ((𝐹
∘f − 𝐽) ∘f + 𝐽) ⇝ (0 + ((π↑2) /
6))) |
256 | 88, 255 | eqbrtrrd 5094 |
. . . 4
⊢ (⊤
→ 𝐹 ⇝ (0 +
((π↑2) / 6))) |
257 | 100 | addid2i 11093 |
. . . 4
⊢ (0 +
((π↑2) / 6)) = ((π↑2) / 6) |
258 | 256, 21, 257 | 3brtr3g 5103 |
. . 3
⊢ (⊤
→ seq1( + , (𝑛 ∈
ℕ ↦ (𝑛↑-2))) ⇝ ((π↑2) /
6)) |
259 | 1, 2, 7, 19, 258 | isumclim 15397 |
. 2
⊢ (⊤
→ Σ𝑘 ∈
ℕ (𝑘↑-2) =
((π↑2) / 6)) |
260 | 259 | mptru 1546 |
1
⊢
Σ𝑘 ∈
ℕ (𝑘↑-2) =
((π↑2) / 6) |