MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1connperf Structured version   Visualization version   GIF version

Theorem t1connperf 23323
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
t1connperf.1 𝑋 = 𝐽
Assertion
Ref Expression
t1connperf ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf)

Proof of Theorem t1connperf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 t1connperf.1 . . . . . . . 8 𝑋 = 𝐽
2 simplr 768 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝐽 ∈ Conn)
3 simprr 772 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ 𝐽)
4 vex 3451 . . . . . . . . . 10 𝑥 ∈ V
54snnz 4740 . . . . . . . . 9 {𝑥} ≠ ∅
65a1i 11 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ≠ ∅)
71t1sncld 23213 . . . . . . . . 9 ((𝐽 ∈ Fre ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
87ad2ant2r 747 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ (Clsd‘𝐽))
91, 2, 3, 6, 8connclo 23302 . . . . . . 7 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} = 𝑋)
104ensn1 8992 . . . . . . 7 {𝑥} ≈ 1o
119, 10eqbrtrrdi 5147 . . . . . 6 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝑋 ≈ 1o)
1211rexlimdvaa 3135 . . . . 5 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (∃𝑥𝑋 {𝑥} ∈ 𝐽𝑋 ≈ 1o))
1312con3d 152 . . . 4 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ¬ ∃𝑥𝑋 {𝑥} ∈ 𝐽))
14 ralnex 3055 . . . 4 (∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽 ↔ ¬ ∃𝑥𝑋 {𝑥} ∈ 𝐽)
1513, 14imbitrrdi 252 . . 3 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
16 t1top 23217 . . . . 5 (𝐽 ∈ Fre → 𝐽 ∈ Top)
1716adantr 480 . . . 4 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → 𝐽 ∈ Top)
181isperf3 23040 . . . . 5 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
1918baib 535 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Perf ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
2017, 19syl 17 . . 3 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (𝐽 ∈ Perf ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
2115, 20sylibrd 259 . 2 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o𝐽 ∈ Perf))
22213impia 1117 1 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4296  {csn 4589   cuni 4871   class class class wbr 5107  cfv 6511  1oc1o 8427  cen 8915  Topctop 22780  Clsdccld 22903  Perfcperf 23022  Frect1 23194  Conncconn 23298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1o 8434  df-en 8919  df-top 22781  df-cld 22906  df-ntr 22907  df-cls 22908  df-lp 23023  df-perf 23024  df-t1 23201  df-conn 23299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator