Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > t1connperf | Structured version Visualization version GIF version |
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.) |
Ref | Expression |
---|---|
t1connperf.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
t1connperf | ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t1connperf.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
2 | simplr 765 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝐽 ∈ Conn) | |
3 | simprr 769 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ 𝐽) | |
4 | vex 3426 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
5 | 4 | snnz 4709 | . . . . . . . . 9 ⊢ {𝑥} ≠ ∅ |
6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ≠ ∅) |
7 | 1 | t1sncld 22385 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Fre ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ (Clsd‘𝐽)) |
8 | 7 | ad2ant2r 743 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ (Clsd‘𝐽)) |
9 | 1, 2, 3, 6, 8 | connclo 22474 | . . . . . . 7 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} = 𝑋) |
10 | 4 | ensn1 8761 | . . . . . . 7 ⊢ {𝑥} ≈ 1o |
11 | 9, 10 | eqbrtrrdi 5110 | . . . . . 6 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝑋 ≈ 1o) |
12 | 11 | rexlimdvaa 3213 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽 → 𝑋 ≈ 1o)) |
13 | 12 | con3d 152 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ¬ ∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽)) |
14 | ralnex 3163 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽 ↔ ¬ ∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽) | |
15 | 13, 14 | syl6ibr 251 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
16 | t1top 22389 | . . . . 5 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → 𝐽 ∈ Top) |
18 | 1 | isperf3 22212 | . . . . 5 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
19 | 18 | baib 535 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Perf ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
20 | 17, 19 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (𝐽 ∈ Perf ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
21 | 15, 20 | sylibrd 258 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → 𝐽 ∈ Perf)) |
22 | 21 | 3impia 1115 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∅c0 4253 {csn 4558 ∪ cuni 4836 class class class wbr 5070 ‘cfv 6418 1oc1o 8260 ≈ cen 8688 Topctop 21950 Clsdccld 22075 Perfcperf 22194 Frect1 22366 Conncconn 22470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1o 8267 df-en 8692 df-top 21951 df-cld 22078 df-ntr 22079 df-cls 22080 df-lp 22195 df-perf 22196 df-t1 22373 df-conn 22471 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |