MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1connperf Structured version   Visualization version   GIF version

Theorem t1connperf 23330
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
t1connperf.1 𝑋 = 𝐽
Assertion
Ref Expression
t1connperf ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf)

Proof of Theorem t1connperf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 t1connperf.1 . . . . . . . 8 𝑋 = 𝐽
2 simplr 768 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝐽 ∈ Conn)
3 simprr 772 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ 𝐽)
4 vex 3454 . . . . . . . . . 10 𝑥 ∈ V
54snnz 4743 . . . . . . . . 9 {𝑥} ≠ ∅
65a1i 11 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ≠ ∅)
71t1sncld 23220 . . . . . . . . 9 ((𝐽 ∈ Fre ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
87ad2ant2r 747 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ (Clsd‘𝐽))
91, 2, 3, 6, 8connclo 23309 . . . . . . 7 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} = 𝑋)
104ensn1 8995 . . . . . . 7 {𝑥} ≈ 1o
119, 10eqbrtrrdi 5150 . . . . . 6 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝑋 ≈ 1o)
1211rexlimdvaa 3136 . . . . 5 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (∃𝑥𝑋 {𝑥} ∈ 𝐽𝑋 ≈ 1o))
1312con3d 152 . . . 4 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ¬ ∃𝑥𝑋 {𝑥} ∈ 𝐽))
14 ralnex 3056 . . . 4 (∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽 ↔ ¬ ∃𝑥𝑋 {𝑥} ∈ 𝐽)
1513, 14imbitrrdi 252 . . 3 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
16 t1top 23224 . . . . 5 (𝐽 ∈ Fre → 𝐽 ∈ Top)
1716adantr 480 . . . 4 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → 𝐽 ∈ Top)
181isperf3 23047 . . . . 5 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
1918baib 535 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Perf ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
2017, 19syl 17 . . 3 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (𝐽 ∈ Perf ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
2115, 20sylibrd 259 . 2 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o𝐽 ∈ Perf))
22213impia 1117 1 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  c0 4299  {csn 4592   cuni 4874   class class class wbr 5110  cfv 6514  1oc1o 8430  cen 8918  Topctop 22787  Clsdccld 22910  Perfcperf 23029  Frect1 23201  Conncconn 23305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1o 8437  df-en 8922  df-top 22788  df-cld 22913  df-ntr 22914  df-cls 22915  df-lp 23030  df-perf 23031  df-t1 23208  df-conn 23306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator