![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t1connperf | Structured version Visualization version GIF version |
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.) |
Ref | Expression |
---|---|
t1connperf.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
t1connperf | ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t1connperf.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
2 | simplr 756 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝐽 ∈ Conn) | |
3 | simprr 760 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ 𝐽) | |
4 | vex 3418 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
5 | 4 | snnz 4585 | . . . . . . . . 9 ⊢ {𝑥} ≠ ∅ |
6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ≠ ∅) |
7 | 1 | t1sncld 21638 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Fre ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ (Clsd‘𝐽)) |
8 | 7 | ad2ant2r 734 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ (Clsd‘𝐽)) |
9 | 1, 2, 3, 6, 8 | connclo 21727 | . . . . . . 7 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} = 𝑋) |
10 | 4 | ensn1 8370 | . . . . . . 7 ⊢ {𝑥} ≈ 1o |
11 | 9, 10 | syl6eqbrr 4969 | . . . . . 6 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝑋 ≈ 1o) |
12 | 11 | rexlimdvaa 3230 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽 → 𝑋 ≈ 1o)) |
13 | 12 | con3d 150 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ¬ ∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽)) |
14 | ralnex 3183 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽 ↔ ¬ ∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽) | |
15 | 13, 14 | syl6ibr 244 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
16 | t1top 21642 | . . . . 5 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
17 | 16 | adantr 473 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → 𝐽 ∈ Top) |
18 | 1 | isperf3 21465 | . . . . 5 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
19 | 18 | baib 528 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Perf ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
20 | 17, 19 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (𝐽 ∈ Perf ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
21 | 15, 20 | sylibrd 251 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → 𝐽 ∈ Perf)) |
22 | 21 | 3impia 1097 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∀wral 3088 ∃wrex 3089 ∅c0 4178 {csn 4441 ∪ cuni 4712 class class class wbr 4929 ‘cfv 6188 1oc1o 7898 ≈ cen 8303 Topctop 21205 Clsdccld 21328 Perfcperf 21447 Frect1 21619 Conncconn 21723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-1o 7905 df-en 8307 df-top 21206 df-cld 21331 df-ntr 21332 df-cls 21333 df-lp 21448 df-perf 21449 df-t1 21626 df-conn 21724 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |