MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1connperf Structured version   Visualization version   GIF version

Theorem t1connperf 23460
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
t1connperf.1 𝑋 = 𝐽
Assertion
Ref Expression
t1connperf ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf)

Proof of Theorem t1connperf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 t1connperf.1 . . . . . . . 8 𝑋 = 𝐽
2 simplr 769 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝐽 ∈ Conn)
3 simprr 773 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ 𝐽)
4 vex 3482 . . . . . . . . . 10 𝑥 ∈ V
54snnz 4781 . . . . . . . . 9 {𝑥} ≠ ∅
65a1i 11 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ≠ ∅)
71t1sncld 23350 . . . . . . . . 9 ((𝐽 ∈ Fre ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
87ad2ant2r 747 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ (Clsd‘𝐽))
91, 2, 3, 6, 8connclo 23439 . . . . . . 7 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} = 𝑋)
104ensn1 9060 . . . . . . 7 {𝑥} ≈ 1o
119, 10eqbrtrrdi 5188 . . . . . 6 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝑋 ≈ 1o)
1211rexlimdvaa 3154 . . . . 5 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (∃𝑥𝑋 {𝑥} ∈ 𝐽𝑋 ≈ 1o))
1312con3d 152 . . . 4 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ¬ ∃𝑥𝑋 {𝑥} ∈ 𝐽))
14 ralnex 3070 . . . 4 (∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽 ↔ ¬ ∃𝑥𝑋 {𝑥} ∈ 𝐽)
1513, 14imbitrrdi 252 . . 3 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
16 t1top 23354 . . . . 5 (𝐽 ∈ Fre → 𝐽 ∈ Top)
1716adantr 480 . . . 4 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → 𝐽 ∈ Top)
181isperf3 23177 . . . . 5 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
1918baib 535 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Perf ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
2017, 19syl 17 . . 3 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (𝐽 ∈ Perf ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
2115, 20sylibrd 259 . 2 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o𝐽 ∈ Perf))
22213impia 1116 1 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  c0 4339  {csn 4631   cuni 4912   class class class wbr 5148  cfv 6563  1oc1o 8498  cen 8981  Topctop 22915  Clsdccld 23040  Perfcperf 23159  Frect1 23331  Conncconn 23435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1o 8505  df-en 8985  df-top 22916  df-cld 23043  df-ntr 23044  df-cls 23045  df-lp 23160  df-perf 23161  df-t1 23338  df-conn 23436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator