MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1connperf Structured version   Visualization version   GIF version

Theorem t1connperf 23379
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
t1connperf.1 𝑋 = 𝐽
Assertion
Ref Expression
t1connperf ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf)

Proof of Theorem t1connperf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 t1connperf.1 . . . . . . . 8 𝑋 = 𝐽
2 simplr 768 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝐽 ∈ Conn)
3 simprr 772 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ 𝐽)
4 vex 3468 . . . . . . . . . 10 𝑥 ∈ V
54snnz 4757 . . . . . . . . 9 {𝑥} ≠ ∅
65a1i 11 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ≠ ∅)
71t1sncld 23269 . . . . . . . . 9 ((𝐽 ∈ Fre ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
87ad2ant2r 747 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ (Clsd‘𝐽))
91, 2, 3, 6, 8connclo 23358 . . . . . . 7 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} = 𝑋)
104ensn1 9040 . . . . . . 7 {𝑥} ≈ 1o
119, 10eqbrtrrdi 5164 . . . . . 6 (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝑋 ≈ 1o)
1211rexlimdvaa 3143 . . . . 5 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (∃𝑥𝑋 {𝑥} ∈ 𝐽𝑋 ≈ 1o))
1312con3d 152 . . . 4 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ¬ ∃𝑥𝑋 {𝑥} ∈ 𝐽))
14 ralnex 3063 . . . 4 (∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽 ↔ ¬ ∃𝑥𝑋 {𝑥} ∈ 𝐽)
1513, 14imbitrrdi 252 . . 3 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
16 t1top 23273 . . . . 5 (𝐽 ∈ Fre → 𝐽 ∈ Top)
1716adantr 480 . . . 4 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → 𝐽 ∈ Top)
181isperf3 23096 . . . . 5 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
1918baib 535 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Perf ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
2017, 19syl 17 . . 3 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (𝐽 ∈ Perf ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
2115, 20sylibrd 259 . 2 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o𝐽 ∈ Perf))
22213impia 1117 1 ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  c0 4313  {csn 4606   cuni 4888   class class class wbr 5124  cfv 6536  1oc1o 8478  cen 8961  Topctop 22836  Clsdccld 22959  Perfcperf 23078  Frect1 23250  Conncconn 23354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-1o 8485  df-en 8965  df-top 22837  df-cld 22962  df-ntr 22963  df-cls 22964  df-lp 23079  df-perf 23080  df-t1 23257  df-conn 23355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator