| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t1connperf | Structured version Visualization version GIF version | ||
| Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| Ref | Expression |
|---|---|
| t1connperf.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| t1connperf | ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1connperf.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simplr 768 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝐽 ∈ Conn) | |
| 3 | simprr 772 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ 𝐽) | |
| 4 | vex 3442 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 5 | 4 | snnz 4730 | . . . . . . . . 9 ⊢ {𝑥} ≠ ∅ |
| 6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ≠ ∅) |
| 7 | 1 | t1sncld 23229 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Fre ∧ 𝑥 ∈ 𝑋) → {𝑥} ∈ (Clsd‘𝐽)) |
| 8 | 7 | ad2ant2r 747 | . . . . . . . 8 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} ∈ (Clsd‘𝐽)) |
| 9 | 1, 2, 3, 6, 8 | connclo 23318 | . . . . . . 7 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → {𝑥} = 𝑋) |
| 10 | 4 | ensn1 8953 | . . . . . . 7 ⊢ {𝑥} ≈ 1o |
| 11 | 9, 10 | eqbrtrrdi 5135 | . . . . . 6 ⊢ (((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) ∧ (𝑥 ∈ 𝑋 ∧ {𝑥} ∈ 𝐽)) → 𝑋 ≈ 1o) |
| 12 | 11 | rexlimdvaa 3131 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽 → 𝑋 ≈ 1o)) |
| 13 | 12 | con3d 152 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ¬ ∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽)) |
| 14 | ralnex 3055 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽 ↔ ¬ ∃𝑥 ∈ 𝑋 {𝑥} ∈ 𝐽) | |
| 15 | 13, 14 | imbitrrdi 252 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
| 16 | t1top 23233 | . . . . 5 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → 𝐽 ∈ Top) |
| 18 | 1 | isperf3 23056 | . . . . 5 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
| 19 | 18 | baib 535 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Perf ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
| 20 | 17, 19 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (𝐽 ∈ Perf ↔ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) |
| 21 | 15, 20 | sylibrd 259 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn) → (¬ 𝑋 ≈ 1o → 𝐽 ∈ Perf)) |
| 22 | 21 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∅c0 4286 {csn 4579 ∪ cuni 4861 class class class wbr 5095 ‘cfv 6486 1oc1o 8388 ≈ cen 8876 Topctop 22796 Clsdccld 22919 Perfcperf 23038 Frect1 23210 Conncconn 23314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-1o 8395 df-en 8880 df-top 22797 df-cld 22922 df-ntr 22923 df-cls 22924 df-lp 23039 df-perf 23040 df-t1 23217 df-conn 23315 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |