MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqff1o Structured version   Visualization version   GIF version

Theorem sqff1o 27226
Description: There is a bijection from the squarefree divisors of a number 𝑁 to the powerset of the prime divisors of 𝑁. Among other things, this implies that a number has 2↑𝑘 squarefree divisors where 𝑘 is the number of prime divisors, and a squarefree number has 2↑𝑘 divisors (because all divisors of a squarefree number are squarefree). The inverse function to 𝐹 takes the product of all the primes in some subset of prime divisors of 𝑁. (Contributed by Mario Carneiro, 1-Jul-2015.)
Hypotheses
Ref Expression
sqff1o.1 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}
sqff1o.2 𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})
sqff1o.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
Assertion
Ref Expression
sqff1o (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
Distinct variable groups:   𝑛,𝑝,𝑥,𝐺   𝑛,𝑁,𝑝,𝑥   𝑆,𝑛,𝑝
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥,𝑛,𝑝)

Proof of Theorem sqff1o
Dummy variables 𝑘 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqff1o.2 . 2 𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})
2 fveq2 6905 . . . . . . . . . . 11 (𝑥 = 𝑛 → (μ‘𝑥) = (μ‘𝑛))
32neeq1d 2999 . . . . . . . . . 10 (𝑥 = 𝑛 → ((μ‘𝑥) ≠ 0 ↔ (μ‘𝑛) ≠ 0))
4 breq1 5145 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝑥𝑁𝑛𝑁))
53, 4anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑛 → (((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁) ↔ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
6 sqff1o.1 . . . . . . . . 9 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}
75, 6elrab2 3694 . . . . . . . 8 (𝑛𝑆 ↔ (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
87simprbi 496 . . . . . . 7 (𝑛𝑆 → ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))
98simprd 495 . . . . . 6 (𝑛𝑆𝑛𝑁)
109ad2antlr 727 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛𝑁)
11 prmz 16713 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1211adantl 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
13 simplr 768 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛𝑆)
1413, 7sylib 218 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
1514simpld 494 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ)
1615nnzd 12642 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℤ)
17 nnz 12636 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1817ad2antrr 726 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
19 dvdstr 16332 . . . . . 6 ((𝑝 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝑛𝑛𝑁) → 𝑝𝑁))
2012, 16, 18, 19syl3anc 1372 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑛𝑛𝑁) → 𝑝𝑁))
2110, 20mpan2d 694 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝𝑛𝑝𝑁))
2221ss2rabdv 4075 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ 𝑝𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
23 prmex 16715 . . . . 5 ℙ ∈ V
2423rabex 5338 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ V
2524elpw 4603 . . 3 ({𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
2622, 25sylibr 234 . 2 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
27 cnveq 5883 . . . . . . 7 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → 𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
2827imaeq1d 6076 . . . . . 6 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → (𝑦 “ ℕ) = ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ))
2928eleq1d 2825 . . . . 5 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → ((𝑦 “ ℕ) ∈ Fin ↔ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin))
30 1nn0 12544 . . . . . . . . . 10 1 ∈ ℕ0
31 0nn0 12543 . . . . . . . . . 10 0 ∈ ℕ0
3230, 31ifcli 4572 . . . . . . . . 9 if(𝑘𝑧, 1, 0) ∈ ℕ0
3332rgenw 3064 . . . . . . . 8 𝑘 ∈ ℙ if(𝑘𝑧, 1, 0) ∈ ℕ0
34 eqid 2736 . . . . . . . . 9 (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))
3534fmpt 7129 . . . . . . . 8 (∀𝑘 ∈ ℙ if(𝑘𝑧, 1, 0) ∈ ℕ0 ↔ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
3633, 35mpbi 230 . . . . . . 7 (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0
3736a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
38 nn0ex 12534 . . . . . . 7 0 ∈ V
3938, 23elmap 8912 . . . . . 6 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ (ℕ0m ℙ) ↔ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
4037, 39sylibr 234 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ (ℕ0m ℙ))
41 fzfi 14014 . . . . . 6 (1...𝑁) ∈ Fin
42 ffn 6735 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0 → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) Fn ℙ)
43 elpreima 7077 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) Fn ℙ → (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ)))
4436, 42, 43mp2b 10 . . . . . . . . . 10 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ))
45 elequ1 2114 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘𝑧𝑥𝑧))
4645ifbid 4548 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → if(𝑘𝑧, 1, 0) = if(𝑥𝑧, 1, 0))
4730, 31ifcli 4572 . . . . . . . . . . . . . 14 if(𝑥𝑧, 1, 0) ∈ ℕ0
4847elexi 3502 . . . . . . . . . . . . 13 if(𝑥𝑧, 1, 0) ∈ V
4946, 34, 48fvmpt 7015 . . . . . . . . . . . 12 (𝑥 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) = if(𝑥𝑧, 1, 0))
5049eleq1d 2825 . . . . . . . . . . 11 (𝑥 ∈ ℙ → (((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ ↔ if(𝑥𝑧, 1, 0) ∈ ℕ))
5150biimpa 476 . . . . . . . . . 10 ((𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ) → if(𝑥𝑧, 1, 0) ∈ ℕ)
5244, 51sylbi 217 . . . . . . . . 9 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) → if(𝑥𝑧, 1, 0) ∈ ℕ)
53 0nnn 12303 . . . . . . . . . . 11 ¬ 0 ∈ ℕ
54 iffalse 4533 . . . . . . . . . . . 12 𝑥𝑧 → if(𝑥𝑧, 1, 0) = 0)
5554eleq1d 2825 . . . . . . . . . . 11 𝑥𝑧 → (if(𝑥𝑧, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ))
5653, 55mtbiri 327 . . . . . . . . . 10 𝑥𝑧 → ¬ if(𝑥𝑧, 1, 0) ∈ ℕ)
5756con4i 114 . . . . . . . . 9 (if(𝑥𝑧, 1, 0) ∈ ℕ → 𝑥𝑧)
5852, 57syl 17 . . . . . . . 8 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) → 𝑥𝑧)
5958ssriv 3986 . . . . . . 7 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ 𝑧
60 elpwi 4606 . . . . . . . . 9 (𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
6160adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
62 prmssnn 16714 . . . . . . . . . 10 ℙ ⊆ ℕ
63 rabss2 4077 . . . . . . . . . 10 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝑁})
6462, 63ax-mp 5 . . . . . . . . 9 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝑁}
65 dvdsssfz1 16356 . . . . . . . . . 10 (𝑁 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6665adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℕ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6764, 66sstrid 3994 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6861, 67sstrd 3993 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑧 ⊆ (1...𝑁))
6959, 68sstrid 3994 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁))
70 ssfi 9214 . . . . . 6 (((1...𝑁) ∈ Fin ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁)) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin)
7141, 69, 70sylancr 587 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin)
7229, 40, 71elrabd 3693 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
73 sqff1o.3 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
74 eqid 2736 . . . . . . 7 {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} = {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}
7573, 741arith 16966 . . . . . 6 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}
76 f1ocnv 6859 . . . . . 6 (𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} → 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ)
77 f1of 6847 . . . . . 6 (𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ → 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}⟶ℕ)
7875, 76, 77mp2b 10 . . . . 5 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}⟶ℕ
7978ffvelcdmi 7102 . . . 4 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ)
8072, 79syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ)
81 f1ocnvfv2 7298 . . . . . . . . . . . 12 ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} ∧ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
8275, 72, 81sylancr 587 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
83731arithlem1 16962 . . . . . . . . . . . 12 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8480, 83syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8582, 84eqtr3d 2778 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8685fveq1d 6907 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑞) = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞))
87 elequ1 2114 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑧𝑞𝑧))
8887ifbid 4548 . . . . . . . . . 10 (𝑘 = 𝑞 → if(𝑘𝑧, 1, 0) = if(𝑞𝑧, 1, 0))
8930, 31ifcli 4572 . . . . . . . . . . 11 if(𝑞𝑧, 1, 0) ∈ ℕ0
9089elexi 3502 . . . . . . . . . 10 if(𝑞𝑧, 1, 0) ∈ V
9188, 34, 90fvmpt 7015 . . . . . . . . 9 (𝑞 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑞) = if(𝑞𝑧, 1, 0))
9286, 91sylan9req 2797 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = if(𝑞𝑧, 1, 0))
93 oveq1 7439 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
94 eqid 2736 . . . . . . . . . 10 (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
95 ovex 7465 . . . . . . . . . 10 (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ∈ V
9693, 94, 95fvmpt 7015 . . . . . . . . 9 (𝑞 ∈ ℙ → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
9796adantl 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
9892, 97eqtr3d 2778 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞𝑧, 1, 0) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
99 breq1 5145 . . . . . . . 8 (1 = if(𝑞𝑧, 1, 0) → (1 ≤ 1 ↔ if(𝑞𝑧, 1, 0) ≤ 1))
100 breq1 5145 . . . . . . . 8 (0 = if(𝑞𝑧, 1, 0) → (0 ≤ 1 ↔ if(𝑞𝑧, 1, 0) ≤ 1))
101 1le1 11892 . . . . . . . 8 1 ≤ 1
102 0le1 11787 . . . . . . . 8 0 ≤ 1
10399, 100, 101, 102keephyp 4596 . . . . . . 7 if(𝑞𝑧, 1, 0) ≤ 1
10498, 103eqbrtrrdi 5182 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1)
105104ralrimiva 3145 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1)
106 issqf 27180 . . . . . 6 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1))
10780, 106syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1))
108105, 107mpbird 257 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0)
109 iftrue 4530 . . . . . . . . . . . 12 (𝑞𝑧 → if(𝑞𝑧, 1, 0) = 1)
110109adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → if(𝑞𝑧, 1, 0) = 1)
11161sselda 3982 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
112 breq1 5145 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → (𝑝𝑁𝑞𝑁))
113112elrab 3691 . . . . . . . . . . . . . . 15 (𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑁))
114111, 113sylib 218 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → (𝑞 ∈ ℙ ∧ 𝑞𝑁))
115114simprd 495 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞𝑁)
116114simpld 494 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞 ∈ ℙ)
117 simpll 766 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑁 ∈ ℕ)
118 pcelnn 16909 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞𝑁))
119116, 117, 118syl2anc 584 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞𝑁))
120115, 119mpbird 257 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → (𝑞 pCnt 𝑁) ∈ ℕ)
121120nnge1d 12315 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 1 ≤ (𝑞 pCnt 𝑁))
122110, 121eqbrtrd 5164 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))
123122ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
124123adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
125 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
12617ad2antrr 726 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℤ)
127 pcge0 16901 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝑞 pCnt 𝑁))
128125, 126, 127syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt 𝑁))
129 iffalse 4533 . . . . . . . . . 10 𝑞𝑧 → if(𝑞𝑧, 1, 0) = 0)
130129breq1d 5152 . . . . . . . . 9 𝑞𝑧 → (if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁) ↔ 0 ≤ (𝑞 pCnt 𝑁)))
131128, 130syl5ibrcom 247 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (¬ 𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
132124, 131pm2.61d 179 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))
13398, 132eqbrtrrd 5166 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))
134133ralrimiva 3145 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))
13580nnzd 12642 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℤ)
13617adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑁 ∈ ℤ)
137 pc2dvds 16918 . . . . . 6 (((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)))
138135, 136, 137syl2anc 584 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)))
139134, 138mpbird 257 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)
140108, 139jca 511 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁))
141 fveq2 6905 . . . . . 6 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (μ‘𝑥) = (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
142141neeq1d 2999 . . . . 5 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → ((μ‘𝑥) ≠ 0 ↔ (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0))
143 breq1 5145 . . . . 5 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (𝑥𝑁 ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁))
144142, 143anbi12d 632 . . . 4 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁) ↔ ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)))
145144, 6elrab2 3694 . . 3 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ 𝑆 ↔ ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ ∧ ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)))
14680, 140, 145sylanbrc 583 . 2 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ 𝑆)
147 eqcom 2743 . . 3 (𝑛 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛)
1487simplbi 497 . . . . . . 7 (𝑛𝑆𝑛 ∈ ℕ)
149148ad2antrl 728 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑛 ∈ ℕ)
15023mptex 7244 . . . . . 6 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
15173fvmpt2 7026 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V) → (𝐺𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
152149, 150, 151sylancl 586 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝐺𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
153152eqeq1d 2738 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))
15475a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
15572adantrl 716 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
156 f1ocnvfvb 7300 . . . . 5 ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} ∧ 𝑛 ∈ ℕ ∧ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛))
157154, 149, 155, 156syl3anc 1372 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛))
15823a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ℙ ∈ V)
159 0cnd 11255 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 0 ∈ ℂ)
160 1cnd 11257 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 1 ∈ ℂ)
161 0ne1 12338 . . . . . . . 8 0 ≠ 1
162161a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 0 ≠ 1)
163158, 159, 160, 162pw2f1olem 9117 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ∧ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))))
164 ssrab2 4079 . . . . . . . . 9 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ ℙ
165164sspwi 4611 . . . . . . . 8 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ 𝒫 ℙ
166 simprr 772 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
167165, 166sselid 3980 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ 𝒫 ℙ)
168167biantrurd 532 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
169 id 22 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
170148adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → 𝑛 ∈ ℕ)
171 pccl 16888 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → (𝑝 pCnt 𝑛) ∈ ℕ0)
172169, 170, 171syl2anr 597 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ ℕ0)
173 elnn0 12530 . . . . . . . . . . . . . 14 ((𝑝 pCnt 𝑛) ∈ ℕ0 ↔ ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0))
174172, 173sylib 218 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0))
175174orcomd 871 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ))
1768simpld 494 . . . . . . . . . . . . . . . . 17 (𝑛𝑆 → (μ‘𝑛) ≠ 0)
177176adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → (μ‘𝑛) ≠ 0)
178 issqf 27180 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1))
179170, 178syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1))
180177, 179mpbid 232 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1)
181180r19.21bi 3250 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ≤ 1)
182 nnle1eq1 12297 . . . . . . . . . . . . . 14 ((𝑝 pCnt 𝑛) ∈ ℕ → ((𝑝 pCnt 𝑛) ≤ 1 ↔ (𝑝 pCnt 𝑛) = 1))
183181, 182syl5ibcom 245 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ → (𝑝 pCnt 𝑛) = 1))
184183orim2d 968 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1)))
185175, 184mpd 15 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))
186 ovex 7465 . . . . . . . . . . . 12 (𝑝 pCnt 𝑛) ∈ V
187186elpr 4649 . . . . . . . . . . 11 ((𝑝 pCnt 𝑛) ∈ {0, 1} ↔ ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))
188185, 187sylibr 234 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ {0, 1})
189188fmpttd 7134 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
190189adantrr 717 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
191 prex 5436 . . . . . . . . 9 {0, 1} ∈ V
192191, 23elmap 8912 . . . . . . . 8 ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
193190, 192sylibr 234 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ))
194193biantrurd 532 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ∧ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))))
195163, 168, 1943bitr4d 311 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1})))
196 eqid 2736 . . . . . . . . 9 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))
197196mptiniseg 6258 . . . . . . . 8 (1 ∈ ℕ0 → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1})
19830, 197ax-mp 5 . . . . . . 7 ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1}
199 id 22 . . . . . . . . . . . 12 ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) = 1)
200 1nn 12278 . . . . . . . . . . . 12 1 ∈ ℕ
201199, 200eqeltrdi 2848 . . . . . . . . . . 11 ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) ∈ ℕ)
202201, 183impbid2 226 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ (𝑝 pCnt 𝑛) ∈ ℕ))
203 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
204 pcelnn 16909 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝𝑛))
205203, 15, 204syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝𝑛))
206202, 205bitrd 279 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ 𝑝𝑛))
207206rabbidva 3442 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
208207adantrr 717 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
209198, 208eqtrid 2788 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
210209eqeq2d 2747 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
211195, 210bitrd 279 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
212153, 157, 2113bitr3d 309 . . 3 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
213147, 212bitrid 283 . 2 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑛 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
2141, 26, 146, 213f1o2d 7688 1 (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2939  wral 3060  {crab 3435  Vcvv 3479  wss 3950  ifcif 4524  𝒫 cpw 4599  {csn 4625  {cpr 4627   class class class wbr 5142  cmpt 5224  ccnv 5683  cima 5687   Fn wfn 6555  wf 6556  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  m cmap 8867  Fincfn 8986  cc 11154  0cc0 11156  1c1 11157  cle 11297  cn 12267  0cn0 12528  cz 12615  ...cfz 13548  cdvds 16291  cprime 16709   pCnt cpc 16875  μcmu 27139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-fz 13549  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-dvds 16292  df-gcd 16533  df-prm 16710  df-pc 16876  df-mu 27145
This theorem is referenced by:  musum  27235
  Copyright terms: Public domain W3C validator