MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqff1o Structured version   Visualization version   GIF version

Theorem sqff1o 25445
Description: There is a bijection from the squarefree divisors of a number 𝑁 to the powerset of the prime divisors of 𝑁. Among other things, this implies that a number has 2↑𝑘 squarefree divisors where 𝑘 is the number of prime divisors, and a squarefree number has 2↑𝑘 divisors (because all divisors of a squarefree number are squarefree). The inverse function to 𝐹 takes the product of all the primes in some subset of prime divisors of 𝑁. (Contributed by Mario Carneiro, 1-Jul-2015.)
Hypotheses
Ref Expression
sqff1o.1 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}
sqff1o.2 𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})
sqff1o.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
Assertion
Ref Expression
sqff1o (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
Distinct variable groups:   𝑛,𝑝,𝑥,𝐺   𝑛,𝑁,𝑝,𝑥   𝑆,𝑛,𝑝
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥,𝑛,𝑝)

Proof of Theorem sqff1o
Dummy variables 𝑘 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqff1o.2 . 2 𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})
2 fveq2 6545 . . . . . . . . . . 11 (𝑥 = 𝑛 → (μ‘𝑥) = (μ‘𝑛))
32neeq1d 3045 . . . . . . . . . 10 (𝑥 = 𝑛 → ((μ‘𝑥) ≠ 0 ↔ (μ‘𝑛) ≠ 0))
4 breq1 4971 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝑥𝑁𝑛𝑁))
53, 4anbi12d 630 . . . . . . . . 9 (𝑥 = 𝑛 → (((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁) ↔ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
6 sqff1o.1 . . . . . . . . 9 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}
75, 6elrab2 3624 . . . . . . . 8 (𝑛𝑆 ↔ (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
87simprbi 497 . . . . . . 7 (𝑛𝑆 → ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))
98simprd 496 . . . . . 6 (𝑛𝑆𝑛𝑁)
109ad2antlr 723 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛𝑁)
11 prmz 15852 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1211adantl 482 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
13 simplr 765 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛𝑆)
1413, 7sylib 219 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
1514simpld 495 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ)
1615nnzd 11940 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℤ)
17 nnz 11858 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1817ad2antrr 722 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
19 dvdstr 15483 . . . . . 6 ((𝑝 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝑛𝑛𝑁) → 𝑝𝑁))
2012, 16, 18, 19syl3anc 1364 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑛𝑛𝑁) → 𝑝𝑁))
2110, 20mpan2d 690 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝𝑛𝑝𝑁))
2221ss2rabdv 3979 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ 𝑝𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
23 prmex 15854 . . . . 5 ℙ ∈ V
2423rabex 5133 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ V
2524elpw 4465 . . 3 ({𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
2622, 25sylibr 235 . 2 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
27 cnveq 5637 . . . . . . 7 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → 𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
2827imaeq1d 5812 . . . . . 6 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → (𝑦 “ ℕ) = ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ))
2928eleq1d 2869 . . . . 5 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → ((𝑦 “ ℕ) ∈ Fin ↔ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin))
30 1nn0 11767 . . . . . . . . . 10 1 ∈ ℕ0
31 0nn0 11766 . . . . . . . . . 10 0 ∈ ℕ0
3230, 31ifcli 4433 . . . . . . . . 9 if(𝑘𝑧, 1, 0) ∈ ℕ0
3332rgenw 3119 . . . . . . . 8 𝑘 ∈ ℙ if(𝑘𝑧, 1, 0) ∈ ℕ0
34 eqid 2797 . . . . . . . . 9 (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))
3534fmpt 6744 . . . . . . . 8 (∀𝑘 ∈ ℙ if(𝑘𝑧, 1, 0) ∈ ℕ0 ↔ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
3633, 35mpbi 231 . . . . . . 7 (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0
3736a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
38 nn0ex 11757 . . . . . . 7 0 ∈ V
3938, 23elmap 8292 . . . . . 6 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ (ℕ0𝑚 ℙ) ↔ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
4037, 39sylibr 235 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ (ℕ0𝑚 ℙ))
41 fzfi 13194 . . . . . 6 (1...𝑁) ∈ Fin
42 ffn 6389 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0 → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) Fn ℙ)
43 elpreima 6700 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) Fn ℙ → (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ)))
4436, 42, 43mp2b 10 . . . . . . . . . 10 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ))
45 elequ1 2090 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘𝑧𝑥𝑧))
4645ifbid 4409 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → if(𝑘𝑧, 1, 0) = if(𝑥𝑧, 1, 0))
4730, 31ifcli 4433 . . . . . . . . . . . . . 14 if(𝑥𝑧, 1, 0) ∈ ℕ0
4847elexi 3459 . . . . . . . . . . . . 13 if(𝑥𝑧, 1, 0) ∈ V
4946, 34, 48fvmpt 6642 . . . . . . . . . . . 12 (𝑥 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) = if(𝑥𝑧, 1, 0))
5049eleq1d 2869 . . . . . . . . . . 11 (𝑥 ∈ ℙ → (((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ ↔ if(𝑥𝑧, 1, 0) ∈ ℕ))
5150biimpa 477 . . . . . . . . . 10 ((𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ) → if(𝑥𝑧, 1, 0) ∈ ℕ)
5244, 51sylbi 218 . . . . . . . . 9 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) → if(𝑥𝑧, 1, 0) ∈ ℕ)
53 0nnn 11527 . . . . . . . . . . 11 ¬ 0 ∈ ℕ
54 iffalse 4396 . . . . . . . . . . . 12 𝑥𝑧 → if(𝑥𝑧, 1, 0) = 0)
5554eleq1d 2869 . . . . . . . . . . 11 𝑥𝑧 → (if(𝑥𝑧, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ))
5653, 55mtbiri 328 . . . . . . . . . 10 𝑥𝑧 → ¬ if(𝑥𝑧, 1, 0) ∈ ℕ)
5756con4i 114 . . . . . . . . 9 (if(𝑥𝑧, 1, 0) ∈ ℕ → 𝑥𝑧)
5852, 57syl 17 . . . . . . . 8 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) → 𝑥𝑧)
5958ssriv 3899 . . . . . . 7 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ 𝑧
60 elpwi 4469 . . . . . . . . 9 (𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
6160adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
62 prmssnn 15853 . . . . . . . . . 10 ℙ ⊆ ℕ
63 rabss2 3981 . . . . . . . . . 10 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝑁})
6462, 63ax-mp 5 . . . . . . . . 9 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝑁}
65 dvdsssfz1 15505 . . . . . . . . . 10 (𝑁 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6665adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℕ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6764, 66sstrid 3906 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6861, 67sstrd 3905 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑧 ⊆ (1...𝑁))
6959, 68sstrid 3906 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁))
70 ssfi 8591 . . . . . 6 (((1...𝑁) ∈ Fin ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁)) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin)
7141, 69, 70sylancr 587 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin)
7229, 40, 71elrabd 3623 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
73 sqff1o.3 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
74 eqid 2797 . . . . . . 7 {𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} = {𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}
7573, 741arith 16096 . . . . . 6 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}
76 f1ocnv 6502 . . . . . 6 (𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} → 𝐺:{𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ)
77 f1of 6490 . . . . . 6 (𝐺:{𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ → 𝐺:{𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}⟶ℕ)
7875, 76, 77mp2b 10 . . . . 5 𝐺:{𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}⟶ℕ
7978ffvelrni 6722 . . . 4 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ)
8072, 79syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ)
81 f1ocnvfv2 6906 . . . . . . . . . . . 12 ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} ∧ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
8275, 72, 81sylancr 587 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
83731arithlem1 16092 . . . . . . . . . . . 12 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8480, 83syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8582, 84eqtr3d 2835 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8685fveq1d 6547 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑞) = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞))
87 elequ1 2090 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑧𝑞𝑧))
8887ifbid 4409 . . . . . . . . . 10 (𝑘 = 𝑞 → if(𝑘𝑧, 1, 0) = if(𝑞𝑧, 1, 0))
8930, 31ifcli 4433 . . . . . . . . . . 11 if(𝑞𝑧, 1, 0) ∈ ℕ0
9089elexi 3459 . . . . . . . . . 10 if(𝑞𝑧, 1, 0) ∈ V
9188, 34, 90fvmpt 6642 . . . . . . . . 9 (𝑞 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑞) = if(𝑞𝑧, 1, 0))
9286, 91sylan9req 2854 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = if(𝑞𝑧, 1, 0))
93 oveq1 7030 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
94 eqid 2797 . . . . . . . . . 10 (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
95 ovex 7055 . . . . . . . . . 10 (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ∈ V
9693, 94, 95fvmpt 6642 . . . . . . . . 9 (𝑞 ∈ ℙ → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
9796adantl 482 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
9892, 97eqtr3d 2835 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞𝑧, 1, 0) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
99 breq1 4971 . . . . . . . 8 (1 = if(𝑞𝑧, 1, 0) → (1 ≤ 1 ↔ if(𝑞𝑧, 1, 0) ≤ 1))
100 breq1 4971 . . . . . . . 8 (0 = if(𝑞𝑧, 1, 0) → (0 ≤ 1 ↔ if(𝑞𝑧, 1, 0) ≤ 1))
101 1le1 11122 . . . . . . . 8 1 ≤ 1
102 0le1 11017 . . . . . . . 8 0 ≤ 1
10399, 100, 101, 102keephyp 4456 . . . . . . 7 if(𝑞𝑧, 1, 0) ≤ 1
10498, 103syl6eqbrr 5008 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1)
105104ralrimiva 3151 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1)
106 issqf 25399 . . . . . 6 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1))
10780, 106syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1))
108105, 107mpbird 258 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0)
109 iftrue 4393 . . . . . . . . . . . 12 (𝑞𝑧 → if(𝑞𝑧, 1, 0) = 1)
110109adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → if(𝑞𝑧, 1, 0) = 1)
11161sselda 3895 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
112 breq1 4971 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → (𝑝𝑁𝑞𝑁))
113112elrab 3621 . . . . . . . . . . . . . . 15 (𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑁))
114111, 113sylib 219 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → (𝑞 ∈ ℙ ∧ 𝑞𝑁))
115114simprd 496 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞𝑁)
116114simpld 495 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞 ∈ ℙ)
117 simpll 763 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑁 ∈ ℕ)
118 pcelnn 16039 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞𝑁))
119116, 117, 118syl2anc 584 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞𝑁))
120115, 119mpbird 258 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → (𝑞 pCnt 𝑁) ∈ ℕ)
121120nnge1d 11539 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 1 ≤ (𝑞 pCnt 𝑁))
122110, 121eqbrtrd 4990 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))
123122ex 413 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
124123adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
125 simpr 485 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
12617ad2antrr 722 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℤ)
127 pcge0 16031 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝑞 pCnt 𝑁))
128125, 126, 127syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt 𝑁))
129 iffalse 4396 . . . . . . . . . 10 𝑞𝑧 → if(𝑞𝑧, 1, 0) = 0)
130129breq1d 4978 . . . . . . . . 9 𝑞𝑧 → (if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁) ↔ 0 ≤ (𝑞 pCnt 𝑁)))
131128, 130syl5ibrcom 248 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (¬ 𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
132124, 131pm2.61d 180 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))
13398, 132eqbrtrrd 4992 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))
134133ralrimiva 3151 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))
13580nnzd 11940 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℤ)
13617adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑁 ∈ ℤ)
137 pc2dvds 16048 . . . . . 6 (((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)))
138135, 136, 137syl2anc 584 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)))
139134, 138mpbird 258 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)
140108, 139jca 512 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁))
141 fveq2 6545 . . . . . 6 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (μ‘𝑥) = (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
142141neeq1d 3045 . . . . 5 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → ((μ‘𝑥) ≠ 0 ↔ (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0))
143 breq1 4971 . . . . 5 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (𝑥𝑁 ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁))
144142, 143anbi12d 630 . . . 4 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁) ↔ ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)))
145144, 6elrab2 3624 . . 3 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ 𝑆 ↔ ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ ∧ ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)))
14680, 140, 145sylanbrc 583 . 2 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ 𝑆)
147 eqcom 2804 . . 3 (𝑛 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛)
1487simplbi 498 . . . . . . 7 (𝑛𝑆𝑛 ∈ ℕ)
149148ad2antrl 724 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑛 ∈ ℕ)
15023mptex 6859 . . . . . 6 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
15173fvmpt2 6652 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V) → (𝐺𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
152149, 150, 151sylancl 586 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝐺𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
153152eqeq1d 2799 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))
15475a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
15572adantrl 712 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
156 f1ocnvfvb 6908 . . . . 5 ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} ∧ 𝑛 ∈ ℕ ∧ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0𝑚 ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛))
157154, 149, 155, 156syl3anc 1364 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛))
15823a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ℙ ∈ V)
159 0cnd 10487 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 0 ∈ ℂ)
160 1cnd 10489 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 1 ∈ ℂ)
161 0ne1 11562 . . . . . . . 8 0 ≠ 1
162161a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 0 ≠ 1)
163158, 159, 160, 162pw2f1olem 8475 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑𝑚 ℙ) ∧ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))))
164 ssrab2 3983 . . . . . . . . 9 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ ℙ
165 sspwb 5240 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ ℙ ↔ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ 𝒫 ℙ)
166164, 165mpbi 231 . . . . . . . 8 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ 𝒫 ℙ
167 simprr 769 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
168166, 167sseldi 3893 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ 𝒫 ℙ)
169168biantrurd 533 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
170 id 22 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
171148adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → 𝑛 ∈ ℕ)
172 pccl 16019 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → (𝑝 pCnt 𝑛) ∈ ℕ0)
173170, 171, 172syl2anr 596 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ ℕ0)
174 elnn0 11753 . . . . . . . . . . . . . 14 ((𝑝 pCnt 𝑛) ∈ ℕ0 ↔ ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0))
175173, 174sylib 219 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0))
176175orcomd 866 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ))
1778simpld 495 . . . . . . . . . . . . . . . . 17 (𝑛𝑆 → (μ‘𝑛) ≠ 0)
178177adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → (μ‘𝑛) ≠ 0)
179 issqf 25399 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1))
180171, 179syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1))
181178, 180mpbid 233 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1)
182181r19.21bi 3177 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ≤ 1)
183 nnle1eq1 11521 . . . . . . . . . . . . . 14 ((𝑝 pCnt 𝑛) ∈ ℕ → ((𝑝 pCnt 𝑛) ≤ 1 ↔ (𝑝 pCnt 𝑛) = 1))
184182, 183syl5ibcom 246 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ → (𝑝 pCnt 𝑛) = 1))
185184orim2d 961 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1)))
186176, 185mpd 15 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))
187 ovex 7055 . . . . . . . . . . . 12 (𝑝 pCnt 𝑛) ∈ V
188187elpr 4501 . . . . . . . . . . 11 ((𝑝 pCnt 𝑛) ∈ {0, 1} ↔ ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))
189186, 188sylibr 235 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ {0, 1})
190189fmpttd 6749 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
191190adantrr 713 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
192 prex 5231 . . . . . . . . 9 {0, 1} ∈ V
193192, 23elmap 8292 . . . . . . . 8 ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑𝑚 ℙ) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
194191, 193sylibr 235 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑𝑚 ℙ))
195194biantrurd 533 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑𝑚 ℙ) ∧ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))))
196163, 169, 1953bitr4d 312 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1})))
197 eqid 2797 . . . . . . . . 9 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))
198197mptiniseg 5975 . . . . . . . 8 (1 ∈ ℕ0 → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1})
19930, 198ax-mp 5 . . . . . . 7 ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1}
200 id 22 . . . . . . . . . . . 12 ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) = 1)
201 1nn 11503 . . . . . . . . . . . 12 1 ∈ ℕ
202200, 201syl6eqel 2893 . . . . . . . . . . 11 ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) ∈ ℕ)
203202, 184impbid2 227 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ (𝑝 pCnt 𝑛) ∈ ℕ))
204 simpr 485 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
205 pcelnn 16039 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝𝑛))
206204, 15, 205syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝𝑛))
207203, 206bitrd 280 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ 𝑝𝑛))
208207rabbidva 3426 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
209208adantrr 713 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
210199, 209syl5eq 2845 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
211210eqeq2d 2807 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
212196, 211bitrd 280 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
213153, 157, 2123bitr3d 310 . . 3 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
214147, 213syl5bb 284 . 2 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑛 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
2151, 26, 146, 214f1o2d 7264 1 (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1525  wcel 2083  wne 2986  wral 3107  {crab 3111  Vcvv 3440  wss 3865  ifcif 4387  𝒫 cpw 4459  {csn 4478  {cpr 4480   class class class wbr 4968  cmpt 5047  ccnv 5449  cima 5453   Fn wfn 6227  wf 6228  1-1-ontowf1o 6231  cfv 6232  (class class class)co 7023  𝑚 cmap 8263  Fincfn 8364  cc 10388  0cc0 10390  1c1 10391  cle 10529  cn 11492  0cn0 11751  cz 11835  ...cfz 12746  cdvds 15444  cprime 15848   pCnt cpc 16006  μcmu 25358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-inf 8760  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-q 12202  df-rp 12244  df-fz 12747  df-fl 13016  df-mod 13092  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-dvds 15445  df-gcd 15681  df-prm 15849  df-pc 16007  df-mu 25364
This theorem is referenced by:  musum  25454
  Copyright terms: Public domain W3C validator