MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqff1o Structured version   Visualization version   GIF version

Theorem sqff1o 25753
Description: There is a bijection from the squarefree divisors of a number 𝑁 to the powerset of the prime divisors of 𝑁. Among other things, this implies that a number has 2↑𝑘 squarefree divisors where 𝑘 is the number of prime divisors, and a squarefree number has 2↑𝑘 divisors (because all divisors of a squarefree number are squarefree). The inverse function to 𝐹 takes the product of all the primes in some subset of prime divisors of 𝑁. (Contributed by Mario Carneiro, 1-Jul-2015.)
Hypotheses
Ref Expression
sqff1o.1 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}
sqff1o.2 𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})
sqff1o.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
Assertion
Ref Expression
sqff1o (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
Distinct variable groups:   𝑛,𝑝,𝑥,𝐺   𝑛,𝑁,𝑝,𝑥   𝑆,𝑛,𝑝
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥,𝑛,𝑝)

Proof of Theorem sqff1o
Dummy variables 𝑘 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqff1o.2 . 2 𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})
2 fveq2 6665 . . . . . . . . . . 11 (𝑥 = 𝑛 → (μ‘𝑥) = (μ‘𝑛))
32neeq1d 3075 . . . . . . . . . 10 (𝑥 = 𝑛 → ((μ‘𝑥) ≠ 0 ↔ (μ‘𝑛) ≠ 0))
4 breq1 5062 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝑥𝑁𝑛𝑁))
53, 4anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑛 → (((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁) ↔ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
6 sqff1o.1 . . . . . . . . 9 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}
75, 6elrab2 3683 . . . . . . . 8 (𝑛𝑆 ↔ (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
87simprbi 499 . . . . . . 7 (𝑛𝑆 → ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))
98simprd 498 . . . . . 6 (𝑛𝑆𝑛𝑁)
109ad2antlr 725 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛𝑁)
11 prmz 16013 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1211adantl 484 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
13 simplr 767 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛𝑆)
1413, 7sylib 220 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
1514simpld 497 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ)
1615nnzd 12080 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℤ)
17 nnz 11998 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1817ad2antrr 724 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
19 dvdstr 15640 . . . . . 6 ((𝑝 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝑛𝑛𝑁) → 𝑝𝑁))
2012, 16, 18, 19syl3anc 1367 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑛𝑛𝑁) → 𝑝𝑁))
2110, 20mpan2d 692 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝𝑛𝑝𝑁))
2221ss2rabdv 4052 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ 𝑝𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
23 prmex 16015 . . . . 5 ℙ ∈ V
2423rabex 5228 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ V
2524elpw 4546 . . 3 ({𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
2622, 25sylibr 236 . 2 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
27 cnveq 5739 . . . . . . 7 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → 𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
2827imaeq1d 5923 . . . . . 6 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → (𝑦 “ ℕ) = ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ))
2928eleq1d 2897 . . . . 5 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → ((𝑦 “ ℕ) ∈ Fin ↔ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin))
30 1nn0 11907 . . . . . . . . . 10 1 ∈ ℕ0
31 0nn0 11906 . . . . . . . . . 10 0 ∈ ℕ0
3230, 31ifcli 4513 . . . . . . . . 9 if(𝑘𝑧, 1, 0) ∈ ℕ0
3332rgenw 3150 . . . . . . . 8 𝑘 ∈ ℙ if(𝑘𝑧, 1, 0) ∈ ℕ0
34 eqid 2821 . . . . . . . . 9 (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))
3534fmpt 6869 . . . . . . . 8 (∀𝑘 ∈ ℙ if(𝑘𝑧, 1, 0) ∈ ℕ0 ↔ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
3633, 35mpbi 232 . . . . . . 7 (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0
3736a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
38 nn0ex 11897 . . . . . . 7 0 ∈ V
3938, 23elmap 8429 . . . . . 6 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ (ℕ0m ℙ) ↔ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
4037, 39sylibr 236 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ (ℕ0m ℙ))
41 fzfi 13334 . . . . . 6 (1...𝑁) ∈ Fin
42 ffn 6509 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0 → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) Fn ℙ)
43 elpreima 6823 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) Fn ℙ → (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ)))
4436, 42, 43mp2b 10 . . . . . . . . . 10 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ))
45 elequ1 2117 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘𝑧𝑥𝑧))
4645ifbid 4489 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → if(𝑘𝑧, 1, 0) = if(𝑥𝑧, 1, 0))
4730, 31ifcli 4513 . . . . . . . . . . . . . 14 if(𝑥𝑧, 1, 0) ∈ ℕ0
4847elexi 3514 . . . . . . . . . . . . 13 if(𝑥𝑧, 1, 0) ∈ V
4946, 34, 48fvmpt 6763 . . . . . . . . . . . 12 (𝑥 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) = if(𝑥𝑧, 1, 0))
5049eleq1d 2897 . . . . . . . . . . 11 (𝑥 ∈ ℙ → (((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ ↔ if(𝑥𝑧, 1, 0) ∈ ℕ))
5150biimpa 479 . . . . . . . . . 10 ((𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ) → if(𝑥𝑧, 1, 0) ∈ ℕ)
5244, 51sylbi 219 . . . . . . . . 9 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) → if(𝑥𝑧, 1, 0) ∈ ℕ)
53 0nnn 11667 . . . . . . . . . . 11 ¬ 0 ∈ ℕ
54 iffalse 4476 . . . . . . . . . . . 12 𝑥𝑧 → if(𝑥𝑧, 1, 0) = 0)
5554eleq1d 2897 . . . . . . . . . . 11 𝑥𝑧 → (if(𝑥𝑧, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ))
5653, 55mtbiri 329 . . . . . . . . . 10 𝑥𝑧 → ¬ if(𝑥𝑧, 1, 0) ∈ ℕ)
5756con4i 114 . . . . . . . . 9 (if(𝑥𝑧, 1, 0) ∈ ℕ → 𝑥𝑧)
5852, 57syl 17 . . . . . . . 8 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) → 𝑥𝑧)
5958ssriv 3971 . . . . . . 7 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ 𝑧
60 elpwi 4551 . . . . . . . . 9 (𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
6160adantl 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
62 prmssnn 16014 . . . . . . . . . 10 ℙ ⊆ ℕ
63 rabss2 4054 . . . . . . . . . 10 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝑁})
6462, 63ax-mp 5 . . . . . . . . 9 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝑁}
65 dvdsssfz1 15662 . . . . . . . . . 10 (𝑁 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6665adantr 483 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℕ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6764, 66sstrid 3978 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6861, 67sstrd 3977 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑧 ⊆ (1...𝑁))
6959, 68sstrid 3978 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁))
70 ssfi 8732 . . . . . 6 (((1...𝑁) ∈ Fin ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁)) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin)
7141, 69, 70sylancr 589 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin)
7229, 40, 71elrabd 3682 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
73 sqff1o.3 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
74 eqid 2821 . . . . . . 7 {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} = {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}
7573, 741arith 16257 . . . . . 6 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}
76 f1ocnv 6622 . . . . . 6 (𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} → 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ)
77 f1of 6610 . . . . . 6 (𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ → 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}⟶ℕ)
7875, 76, 77mp2b 10 . . . . 5 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}⟶ℕ
7978ffvelrni 6845 . . . 4 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ)
8072, 79syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ)
81 f1ocnvfv2 7028 . . . . . . . . . . . 12 ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} ∧ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
8275, 72, 81sylancr 589 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
83731arithlem1 16253 . . . . . . . . . . . 12 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8480, 83syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8582, 84eqtr3d 2858 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8685fveq1d 6667 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑞) = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞))
87 elequ1 2117 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑧𝑞𝑧))
8887ifbid 4489 . . . . . . . . . 10 (𝑘 = 𝑞 → if(𝑘𝑧, 1, 0) = if(𝑞𝑧, 1, 0))
8930, 31ifcli 4513 . . . . . . . . . . 11 if(𝑞𝑧, 1, 0) ∈ ℕ0
9089elexi 3514 . . . . . . . . . 10 if(𝑞𝑧, 1, 0) ∈ V
9188, 34, 90fvmpt 6763 . . . . . . . . 9 (𝑞 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑞) = if(𝑞𝑧, 1, 0))
9286, 91sylan9req 2877 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = if(𝑞𝑧, 1, 0))
93 oveq1 7157 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
94 eqid 2821 . . . . . . . . . 10 (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
95 ovex 7183 . . . . . . . . . 10 (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ∈ V
9693, 94, 95fvmpt 6763 . . . . . . . . 9 (𝑞 ∈ ℙ → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
9796adantl 484 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
9892, 97eqtr3d 2858 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞𝑧, 1, 0) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
99 breq1 5062 . . . . . . . 8 (1 = if(𝑞𝑧, 1, 0) → (1 ≤ 1 ↔ if(𝑞𝑧, 1, 0) ≤ 1))
100 breq1 5062 . . . . . . . 8 (0 = if(𝑞𝑧, 1, 0) → (0 ≤ 1 ↔ if(𝑞𝑧, 1, 0) ≤ 1))
101 1le1 11262 . . . . . . . 8 1 ≤ 1
102 0le1 11157 . . . . . . . 8 0 ≤ 1
10399, 100, 101, 102keephyp 4536 . . . . . . 7 if(𝑞𝑧, 1, 0) ≤ 1
10498, 103eqbrtrrdi 5099 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1)
105104ralrimiva 3182 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1)
106 issqf 25707 . . . . . 6 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1))
10780, 106syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1))
108105, 107mpbird 259 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0)
109 iftrue 4473 . . . . . . . . . . . 12 (𝑞𝑧 → if(𝑞𝑧, 1, 0) = 1)
110109adantl 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → if(𝑞𝑧, 1, 0) = 1)
11161sselda 3967 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
112 breq1 5062 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → (𝑝𝑁𝑞𝑁))
113112elrab 3680 . . . . . . . . . . . . . . 15 (𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑁))
114111, 113sylib 220 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → (𝑞 ∈ ℙ ∧ 𝑞𝑁))
115114simprd 498 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞𝑁)
116114simpld 497 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞 ∈ ℙ)
117 simpll 765 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑁 ∈ ℕ)
118 pcelnn 16200 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞𝑁))
119116, 117, 118syl2anc 586 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞𝑁))
120115, 119mpbird 259 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → (𝑞 pCnt 𝑁) ∈ ℕ)
121120nnge1d 11679 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 1 ≤ (𝑞 pCnt 𝑁))
122110, 121eqbrtrd 5081 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))
123122ex 415 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
124123adantr 483 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
125 simpr 487 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
12617ad2antrr 724 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℤ)
127 pcge0 16192 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝑞 pCnt 𝑁))
128125, 126, 127syl2anc 586 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt 𝑁))
129 iffalse 4476 . . . . . . . . . 10 𝑞𝑧 → if(𝑞𝑧, 1, 0) = 0)
130129breq1d 5069 . . . . . . . . 9 𝑞𝑧 → (if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁) ↔ 0 ≤ (𝑞 pCnt 𝑁)))
131128, 130syl5ibrcom 249 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (¬ 𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
132124, 131pm2.61d 181 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))
13398, 132eqbrtrrd 5083 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))
134133ralrimiva 3182 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))
13580nnzd 12080 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℤ)
13617adantr 483 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑁 ∈ ℤ)
137 pc2dvds 16209 . . . . . 6 (((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)))
138135, 136, 137syl2anc 586 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)))
139134, 138mpbird 259 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)
140108, 139jca 514 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁))
141 fveq2 6665 . . . . . 6 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (μ‘𝑥) = (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
142141neeq1d 3075 . . . . 5 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → ((μ‘𝑥) ≠ 0 ↔ (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0))
143 breq1 5062 . . . . 5 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (𝑥𝑁 ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁))
144142, 143anbi12d 632 . . . 4 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁) ↔ ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)))
145144, 6elrab2 3683 . . 3 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ 𝑆 ↔ ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ ∧ ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)))
14680, 140, 145sylanbrc 585 . 2 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ 𝑆)
147 eqcom 2828 . . 3 (𝑛 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛)
1487simplbi 500 . . . . . . 7 (𝑛𝑆𝑛 ∈ ℕ)
149148ad2antrl 726 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑛 ∈ ℕ)
15023mptex 6980 . . . . . 6 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
15173fvmpt2 6774 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V) → (𝐺𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
152149, 150, 151sylancl 588 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝐺𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
153152eqeq1d 2823 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))
15475a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
15572adantrl 714 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
156 f1ocnvfvb 7030 . . . . 5 ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} ∧ 𝑛 ∈ ℕ ∧ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛))
157154, 149, 155, 156syl3anc 1367 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛))
15823a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ℙ ∈ V)
159 0cnd 10628 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 0 ∈ ℂ)
160 1cnd 10630 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 1 ∈ ℂ)
161 0ne1 11702 . . . . . . . 8 0 ≠ 1
162161a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 0 ≠ 1)
163158, 159, 160, 162pw2f1olem 8615 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ∧ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))))
164 ssrab2 4056 . . . . . . . . 9 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ ℙ
165 sspwb 5334 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ ℙ ↔ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ 𝒫 ℙ)
166164, 165mpbi 232 . . . . . . . 8 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ 𝒫 ℙ
167 simprr 771 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
168166, 167sseldi 3965 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ 𝒫 ℙ)
169168biantrurd 535 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
170 id 22 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
171148adantl 484 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → 𝑛 ∈ ℕ)
172 pccl 16180 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → (𝑝 pCnt 𝑛) ∈ ℕ0)
173170, 171, 172syl2anr 598 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ ℕ0)
174 elnn0 11893 . . . . . . . . . . . . . 14 ((𝑝 pCnt 𝑛) ∈ ℕ0 ↔ ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0))
175173, 174sylib 220 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0))
176175orcomd 867 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ))
1778simpld 497 . . . . . . . . . . . . . . . . 17 (𝑛𝑆 → (μ‘𝑛) ≠ 0)
178177adantl 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → (μ‘𝑛) ≠ 0)
179 issqf 25707 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1))
180171, 179syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1))
181178, 180mpbid 234 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1)
182181r19.21bi 3208 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ≤ 1)
183 nnle1eq1 11661 . . . . . . . . . . . . . 14 ((𝑝 pCnt 𝑛) ∈ ℕ → ((𝑝 pCnt 𝑛) ≤ 1 ↔ (𝑝 pCnt 𝑛) = 1))
184182, 183syl5ibcom 247 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ → (𝑝 pCnt 𝑛) = 1))
185184orim2d 963 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1)))
186176, 185mpd 15 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))
187 ovex 7183 . . . . . . . . . . . 12 (𝑝 pCnt 𝑛) ∈ V
188187elpr 4584 . . . . . . . . . . 11 ((𝑝 pCnt 𝑛) ∈ {0, 1} ↔ ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))
189186, 188sylibr 236 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ {0, 1})
190189fmpttd 6874 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
191190adantrr 715 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
192 prex 5325 . . . . . . . . 9 {0, 1} ∈ V
193192, 23elmap 8429 . . . . . . . 8 ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
194191, 193sylibr 236 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ))
195194biantrurd 535 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ∧ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))))
196163, 169, 1953bitr4d 313 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1})))
197 eqid 2821 . . . . . . . . 9 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))
198197mptiniseg 6088 . . . . . . . 8 (1 ∈ ℕ0 → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1})
19930, 198ax-mp 5 . . . . . . 7 ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1}
200 id 22 . . . . . . . . . . . 12 ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) = 1)
201 1nn 11643 . . . . . . . . . . . 12 1 ∈ ℕ
202200, 201eqeltrdi 2921 . . . . . . . . . . 11 ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) ∈ ℕ)
203202, 184impbid2 228 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ (𝑝 pCnt 𝑛) ∈ ℕ))
204 simpr 487 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
205 pcelnn 16200 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝𝑛))
206204, 15, 205syl2anc 586 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝𝑛))
207203, 206bitrd 281 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ 𝑝𝑛))
208207rabbidva 3479 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
209208adantrr 715 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
210199, 209syl5eq 2868 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
211210eqeq2d 2832 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
212196, 211bitrd 281 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
213153, 157, 2123bitr3d 311 . . 3 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
214147, 213syl5bb 285 . 2 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑛 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
2151, 26, 146, 214f1o2d 7393 1 (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  {crab 3142  Vcvv 3495  wss 3936  ifcif 4467  𝒫 cpw 4539  {csn 4561  {cpr 4563   class class class wbr 5059  cmpt 5139  ccnv 5549  cima 5553   Fn wfn 6345  wf 6346  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  m cmap 8400  Fincfn 8503  cc 10529  0cc0 10531  1c1 10532  cle 10670  cn 11632  0cn0 11891  cz 11975  ...cfz 12886  cdvds 15601  cprime 16009   pCnt cpc 16167  μcmu 25666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-prm 16010  df-pc 16168  df-mu 25672
This theorem is referenced by:  musum  25762
  Copyright terms: Public domain W3C validator