Step | Hyp | Ref
| Expression |
1 | | sqff1o.2 |
. 2
⊢ 𝐹 = (𝑛 ∈ 𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛}) |
2 | | fveq2 6545 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑛 → (μ‘𝑥) = (μ‘𝑛)) |
3 | 2 | neeq1d 3045 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑛 → ((μ‘𝑥) ≠ 0 ↔ (μ‘𝑛) ≠ 0)) |
4 | | breq1 4971 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑛 → (𝑥 ∥ 𝑁 ↔ 𝑛 ∥ 𝑁)) |
5 | 3, 4 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (((μ‘𝑥) ≠ 0 ∧ 𝑥 ∥ 𝑁) ↔ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁))) |
6 | | sqff1o.1 |
. . . . . . . . 9
⊢ 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥 ∥ 𝑁)} |
7 | 5, 6 | elrab2 3624 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑆 ↔ (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁))) |
8 | 7 | simprbi 497 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑆 → ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)) |
9 | 8 | simprd 496 |
. . . . . 6
⊢ (𝑛 ∈ 𝑆 → 𝑛 ∥ 𝑁) |
10 | 9 | ad2antlr 723 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∥ 𝑁) |
11 | | prmz 15852 |
. . . . . . 7
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
12 | 11 | adantl 482 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
13 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ 𝑆) |
14 | 13, 7 | sylib 219 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁))) |
15 | 14 | simpld 495 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ) |
16 | 15 | nnzd 11940 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℤ) |
17 | | nnz 11858 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
18 | 17 | ad2antrr 722 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ) |
19 | | dvdstr 15483 |
. . . . . 6
⊢ ((𝑝 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝 ∥ 𝑛 ∧ 𝑛 ∥ 𝑁) → 𝑝 ∥ 𝑁)) |
20 | 12, 16, 18, 19 | syl3anc 1364 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ 𝑛 ∧ 𝑛 ∥ 𝑁) → 𝑝 ∥ 𝑁)) |
21 | 10, 20 | mpan2d 690 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑛 → 𝑝 ∥ 𝑁)) |
22 | 21 | ss2rabdv 3979 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
23 | | prmex 15854 |
. . . . 5
⊢ ℙ
∈ V |
24 | 23 | rabex 5133 |
. . . 4
⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛} ∈ V |
25 | 24 | elpw 4465 |
. . 3
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
26 | 22, 25 | sylibr 235 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
27 | | cnveq 5637 |
. . . . . . 7
⊢ (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) → ◡𝑦 = ◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) |
28 | 27 | imaeq1d 5812 |
. . . . . 6
⊢ (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) → (◡𝑦 “ ℕ) = (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ)) |
29 | 28 | eleq1d 2869 |
. . . . 5
⊢ (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) → ((◡𝑦 “ ℕ) ∈ Fin ↔ (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ) ∈
Fin)) |
30 | | 1nn0 11767 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ0 |
31 | | 0nn0 11766 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
32 | 30, 31 | ifcli 4433 |
. . . . . . . . 9
⊢ if(𝑘 ∈ 𝑧, 1, 0) ∈
ℕ0 |
33 | 32 | rgenw 3119 |
. . . . . . . 8
⊢
∀𝑘 ∈
ℙ if(𝑘 ∈ 𝑧, 1, 0) ∈
ℕ0 |
34 | | eqid 2797 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) |
35 | 34 | fmpt 6744 |
. . . . . . . 8
⊢
(∀𝑘 ∈
ℙ if(𝑘 ∈ 𝑧, 1, 0) ∈
ℕ0 ↔ (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1,
0)):ℙ⟶ℕ0) |
36 | 33, 35 | mpbi 231 |
. . . . . . 7
⊢ (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1,
0)):ℙ⟶ℕ0 |
37 | 36 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1,
0)):ℙ⟶ℕ0) |
38 | | nn0ex 11757 |
. . . . . . 7
⊢
ℕ0 ∈ V |
39 | 38, 23 | elmap 8292 |
. . . . . 6
⊢ ((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ∈ (ℕ0
↑𝑚 ℙ) ↔ (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1,
0)):ℙ⟶ℕ0) |
40 | 37, 39 | sylibr 235 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ∈ (ℕ0
↑𝑚 ℙ)) |
41 | | fzfi 13194 |
. . . . . 6
⊢
(1...𝑁) ∈
Fin |
42 | | ffn 6389 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)):ℙ⟶ℕ0
→ (𝑘 ∈ ℙ
↦ if(𝑘 ∈ 𝑧, 1, 0)) Fn
ℙ) |
43 | | elpreima 6700 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) Fn ℙ → (𝑥 ∈ (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))‘𝑥) ∈ ℕ))) |
44 | 36, 42, 43 | mp2b 10 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))‘𝑥) ∈ ℕ)) |
45 | | elequ1 2090 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → (𝑘 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) |
46 | 45 | ifbid 4409 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑥 → if(𝑘 ∈ 𝑧, 1, 0) = if(𝑥 ∈ 𝑧, 1, 0)) |
47 | 30, 31 | ifcli 4433 |
. . . . . . . . . . . . . 14
⊢ if(𝑥 ∈ 𝑧, 1, 0) ∈
ℕ0 |
48 | 47 | elexi 3459 |
. . . . . . . . . . . . 13
⊢ if(𝑥 ∈ 𝑧, 1, 0) ∈ V |
49 | 46, 34, 48 | fvmpt 6642 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))‘𝑥) = if(𝑥 ∈ 𝑧, 1, 0)) |
50 | 49 | eleq1d 2869 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℙ → (((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))‘𝑥) ∈ ℕ ↔ if(𝑥 ∈ 𝑧, 1, 0) ∈ ℕ)) |
51 | 50 | biimpa 477 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))‘𝑥) ∈ ℕ) → if(𝑥 ∈ 𝑧, 1, 0) ∈ ℕ) |
52 | 44, 51 | sylbi 218 |
. . . . . . . . 9
⊢ (𝑥 ∈ (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ) → if(𝑥 ∈ 𝑧, 1, 0) ∈ ℕ) |
53 | | 0nnn 11527 |
. . . . . . . . . . 11
⊢ ¬ 0
∈ ℕ |
54 | | iffalse 4396 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ 𝑧 → if(𝑥 ∈ 𝑧, 1, 0) = 0) |
55 | 54 | eleq1d 2869 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝑧 → (if(𝑥 ∈ 𝑧, 1, 0) ∈ ℕ ↔ 0 ∈
ℕ)) |
56 | 53, 55 | mtbiri 328 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝑧 → ¬ if(𝑥 ∈ 𝑧, 1, 0) ∈ ℕ) |
57 | 56 | con4i 114 |
. . . . . . . . 9
⊢ (if(𝑥 ∈ 𝑧, 1, 0) ∈ ℕ → 𝑥 ∈ 𝑧) |
58 | 52, 57 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ) → 𝑥 ∈ 𝑧) |
59 | 58 | ssriv 3899 |
. . . . . . 7
⊢ (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ) ⊆ 𝑧 |
60 | | elpwi 4469 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
61 | 60 | adantl 482 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
62 | | prmssnn 15853 |
. . . . . . . . . 10
⊢ ℙ
⊆ ℕ |
63 | | rabss2 3981 |
. . . . . . . . . 10
⊢ (ℙ
⊆ ℕ → {𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁}) |
64 | 62, 63 | ax-mp 5 |
. . . . . . . . 9
⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁} |
65 | | dvdsssfz1 15505 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁} ⊆ (1...𝑁)) |
66 | 65 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁} ⊆ (1...𝑁)) |
67 | 64, 66 | sstrid 3906 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ⊆ (1...𝑁)) |
68 | 61, 67 | sstrd 3905 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → 𝑧 ⊆ (1...𝑁)) |
69 | 59, 68 | sstrid 3906 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁)) |
70 | | ssfi 8591 |
. . . . . 6
⊢
(((1...𝑁) ∈ Fin
∧ (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁)) → (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ) ∈
Fin) |
71 | 41, 69, 70 | sylancr 587 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (◡(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) “ ℕ) ∈
Fin) |
72 | 29, 40, 71 | elrabd 3623 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈
Fin}) |
73 | | sqff1o.3 |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
74 | | eqid 2797 |
. . . . . . 7
⊢ {𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈ Fin} = {𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈
Fin} |
75 | 73, 74 | 1arith 16096 |
. . . . . 6
⊢ 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈
Fin} |
76 | | f1ocnv 6502 |
. . . . . 6
⊢ (𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈ Fin} → ◡𝐺:{𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ) |
77 | | f1of 6490 |
. . . . . 6
⊢ (◡𝐺:{𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ → ◡𝐺:{𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈
Fin}⟶ℕ) |
78 | 75, 76, 77 | mp2b 10 |
. . . . 5
⊢ ◡𝐺:{𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈
Fin}⟶ℕ |
79 | 78 | ffvelrni 6722 |
. . . 4
⊢ ((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈ Fin} → (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∈ ℕ) |
80 | 72, 79 | syl 17 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∈ ℕ) |
81 | | f1ocnvfv2 6906 |
. . . . . . . . . . . 12
⊢ ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈ Fin} ∧ (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈ Fin}) → (𝐺‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) |
82 | 75, 72, 81 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (𝐺‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) |
83 | 73 | 1arithlem1 16092 |
. . . . . . . . . . . 12
⊢ ((◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∈ ℕ → (𝐺‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))))) |
84 | 80, 83 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (𝐺‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))))) |
85 | 82, 84 | eqtr3d 2835 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))))) |
86 | 85 | fveq1d 6547 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))‘𝑞) = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))))‘𝑞)) |
87 | | elequ1 2090 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑞 → (𝑘 ∈ 𝑧 ↔ 𝑞 ∈ 𝑧)) |
88 | 87 | ifbid 4409 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑞 → if(𝑘 ∈ 𝑧, 1, 0) = if(𝑞 ∈ 𝑧, 1, 0)) |
89 | 30, 31 | ifcli 4433 |
. . . . . . . . . . 11
⊢ if(𝑞 ∈ 𝑧, 1, 0) ∈
ℕ0 |
90 | 89 | elexi 3459 |
. . . . . . . . . 10
⊢ if(𝑞 ∈ 𝑧, 1, 0) ∈ V |
91 | 88, 34, 90 | fvmpt 6642 |
. . . . . . . . 9
⊢ (𝑞 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))‘𝑞) = if(𝑞 ∈ 𝑧, 1, 0)) |
92 | 86, 91 | sylan9req 2854 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))))‘𝑞) = if(𝑞 ∈ 𝑧, 1, 0)) |
93 | | oveq1 7030 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑞 → (𝑝 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) = (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))))) |
94 | | eqid 2797 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℙ ↦ (𝑝 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))))) |
95 | | ovex 7055 |
. . . . . . . . . 10
⊢ (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ∈ V |
96 | 93, 94, 95 | fvmpt 6642 |
. . . . . . . . 9
⊢ (𝑞 ∈ ℙ → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))))) |
97 | 96 | adantl 482 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))))) |
98 | 92, 97 | eqtr3d 2835 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞 ∈ 𝑧, 1, 0) = (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))))) |
99 | | breq1 4971 |
. . . . . . . 8
⊢ (1 =
if(𝑞 ∈ 𝑧, 1, 0) → (1 ≤ 1 ↔
if(𝑞 ∈ 𝑧, 1, 0) ≤
1)) |
100 | | breq1 4971 |
. . . . . . . 8
⊢ (0 =
if(𝑞 ∈ 𝑧, 1, 0) → (0 ≤ 1 ↔
if(𝑞 ∈ 𝑧, 1, 0) ≤
1)) |
101 | | 1le1 11122 |
. . . . . . . 8
⊢ 1 ≤
1 |
102 | | 0le1 11017 |
. . . . . . . 8
⊢ 0 ≤
1 |
103 | 99, 100, 101, 102 | keephyp 4456 |
. . . . . . 7
⊢ if(𝑞 ∈ 𝑧, 1, 0) ≤ 1 |
104 | 98, 103 | syl6eqbrr 5008 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≤ 1) |
105 | 104 | ralrimiva 3151 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≤ 1) |
106 | | issqf 25399 |
. . . . . 6
⊢ ((◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∈ ℕ →
((μ‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≤ 1)) |
107 | 80, 106 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → ((μ‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≤ 1)) |
108 | 105, 107 | mpbird 258 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (μ‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≠ 0) |
109 | | iftrue 4393 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ 𝑧 → if(𝑞 ∈ 𝑧, 1, 0) = 1) |
110 | 109 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ 𝑧) → if(𝑞 ∈ 𝑧, 1, 0) = 1) |
111 | 61 | sselda 3895 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ 𝑧) → 𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
112 | | breq1 4971 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑞 → (𝑝 ∥ 𝑁 ↔ 𝑞 ∥ 𝑁)) |
113 | 112 | elrab 3621 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑁)) |
114 | 111, 113 | sylib 219 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ 𝑧) → (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑁)) |
115 | 114 | simprd 496 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ 𝑧) → 𝑞 ∥ 𝑁) |
116 | 114 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ 𝑧) → 𝑞 ∈ ℙ) |
117 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ 𝑧) → 𝑁 ∈ ℕ) |
118 | | pcelnn 16039 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞 ∥ 𝑁)) |
119 | 116, 117,
118 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ 𝑧) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞 ∥ 𝑁)) |
120 | 115, 119 | mpbird 258 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ 𝑧) → (𝑞 pCnt 𝑁) ∈ ℕ) |
121 | 120 | nnge1d 11539 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ 𝑧) → 1 ≤ (𝑞 pCnt 𝑁)) |
122 | 110, 121 | eqbrtrd 4990 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ 𝑧) → if(𝑞 ∈ 𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)) |
123 | 122 | ex 413 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (𝑞 ∈ 𝑧 → if(𝑞 ∈ 𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))) |
124 | 123 | adantr 481 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 ∈ 𝑧 → if(𝑞 ∈ 𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))) |
125 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ) |
126 | 17 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℤ) |
127 | | pcge0 16031 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 0 ≤
(𝑞 pCnt 𝑁)) |
128 | 125, 126,
127 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt 𝑁)) |
129 | | iffalse 4396 |
. . . . . . . . . 10
⊢ (¬
𝑞 ∈ 𝑧 → if(𝑞 ∈ 𝑧, 1, 0) = 0) |
130 | 129 | breq1d 4978 |
. . . . . . . . 9
⊢ (¬
𝑞 ∈ 𝑧 → (if(𝑞 ∈ 𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁) ↔ 0 ≤ (𝑞 pCnt 𝑁))) |
131 | 128, 130 | syl5ibrcom 248 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → (¬ 𝑞 ∈ 𝑧 → if(𝑞 ∈ 𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))) |
132 | 124, 131 | pm2.61d 180 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞 ∈ 𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)) |
133 | 98, 132 | eqbrtrrd 4992 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)) |
134 | 133 | ralrimiva 3151 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)) |
135 | 80 | nnzd 11940 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∈ ℤ) |
136 | 17 | adantr 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → 𝑁 ∈ ℤ) |
137 | | pc2dvds 16048 |
. . . . . 6
⊢ (((◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))) |
138 | 135, 136,
137 | syl2anc 584 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → ((◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))) |
139 | 134, 138 | mpbird 258 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∥ 𝑁) |
140 | 108, 139 | jca 512 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → ((μ‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≠ 0 ∧ (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∥ 𝑁)) |
141 | | fveq2 6545 |
. . . . . 6
⊢ (𝑥 = (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) → (μ‘𝑥) = (μ‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))))) |
142 | 141 | neeq1d 3045 |
. . . . 5
⊢ (𝑥 = (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) → ((μ‘𝑥) ≠ 0 ↔
(μ‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≠ 0)) |
143 | | breq1 4971 |
. . . . 5
⊢ (𝑥 = (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) → (𝑥 ∥ 𝑁 ↔ (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∥ 𝑁)) |
144 | 142, 143 | anbi12d 630 |
. . . 4
⊢ (𝑥 = (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) → (((μ‘𝑥) ≠ 0 ∧ 𝑥 ∥ 𝑁) ↔ ((μ‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≠ 0 ∧ (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∥ 𝑁))) |
145 | 144, 6 | elrab2 3624 |
. . 3
⊢ ((◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∈ 𝑆 ↔ ((◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∈ ℕ ∧
((μ‘(◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) ≠ 0 ∧ (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∥ 𝑁))) |
146 | 80, 140, 145 | sylanbrc 583 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ∈ 𝑆) |
147 | | eqcom 2804 |
. . 3
⊢ (𝑛 = (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ↔ (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) = 𝑛) |
148 | 7 | simplbi 498 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑆 → 𝑛 ∈ ℕ) |
149 | 148 | ad2antrl 724 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → 𝑛 ∈ ℕ) |
150 | 23 | mptex 6859 |
. . . . . 6
⊢ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V |
151 | 73 | fvmpt2 6652 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V) → (𝐺‘𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
152 | 149, 150,
151 | sylancl 586 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → (𝐺‘𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
153 | 152 | eqeq1d 2799 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → ((𝐺‘𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)))) |
154 | 75 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈
Fin}) |
155 | 72 | adantrl 712 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈
Fin}) |
156 | | f1ocnvfvb 6908 |
. . . . 5
⊢ ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈ Fin} ∧ 𝑛 ∈ ℕ ∧ (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑦 “ ℕ) ∈ Fin}) → ((𝐺‘𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ↔ (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) = 𝑛)) |
157 | 154, 149,
155, 156 | syl3anc 1364 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → ((𝐺‘𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ↔ (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) = 𝑛)) |
158 | 23 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → ℙ ∈
V) |
159 | | 0cnd 10487 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → 0 ∈
ℂ) |
160 | | 1cnd 10489 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → 1 ∈
ℂ) |
161 | | 0ne1 11562 |
. . . . . . . 8
⊢ 0 ≠
1 |
162 | 161 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → 0 ≠ 1) |
163 | 158, 159,
160, 162 | pw2f1olem 8475 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → ((𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑𝑚
ℙ) ∧ 𝑧 = (◡(𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1})))) |
164 | | ssrab2 3983 |
. . . . . . . . 9
⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ⊆ ℙ |
165 | | sspwb 5240 |
. . . . . . . . 9
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ⊆ ℙ ↔ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ⊆ 𝒫
ℙ) |
166 | 164, 165 | mpbi 231 |
. . . . . . . 8
⊢ 𝒫
{𝑝 ∈ ℙ ∣
𝑝 ∥ 𝑁} ⊆ 𝒫 ℙ |
167 | | simprr 769 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
168 | 166, 167 | sseldi 3893 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → 𝑧 ∈ 𝒫 ℙ) |
169 | 168 | biantrurd 533 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ↔ (𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))))) |
170 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℙ) |
171 | 148 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) → 𝑛 ∈ ℕ) |
172 | | pccl 16019 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → (𝑝 pCnt 𝑛) ∈
ℕ0) |
173 | 170, 171,
172 | syl2anr 596 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈
ℕ0) |
174 | | elnn0 11753 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 pCnt 𝑛) ∈ ℕ0 ↔ ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0)) |
175 | 173, 174 | sylib 219 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0)) |
176 | 175 | orcomd 866 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ)) |
177 | 8 | simpld 495 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝑆 → (μ‘𝑛) ≠ 0) |
178 | 177 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) → (μ‘𝑛) ≠ 0) |
179 | | issqf 25399 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ →
((μ‘𝑛) ≠ 0
↔ ∀𝑝 ∈
ℙ (𝑝 pCnt 𝑛) ≤ 1)) |
180 | 171, 179 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1)) |
181 | 178, 180 | mpbid 233 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1) |
182 | 181 | r19.21bi 3177 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ≤ 1) |
183 | | nnle1eq1 11521 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 pCnt 𝑛) ∈ ℕ → ((𝑝 pCnt 𝑛) ≤ 1 ↔ (𝑝 pCnt 𝑛) = 1)) |
184 | 182, 183 | syl5ibcom 246 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ → (𝑝 pCnt 𝑛) = 1)) |
185 | 184 | orim2d 961 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))) |
186 | 176, 185 | mpd 15 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1)) |
187 | | ovex 7055 |
. . . . . . . . . . . 12
⊢ (𝑝 pCnt 𝑛) ∈ V |
188 | 187 | elpr 4501 |
. . . . . . . . . . 11
⊢ ((𝑝 pCnt 𝑛) ∈ {0, 1} ↔ ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1)) |
189 | 186, 188 | sylibr 235 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ {0, 1}) |
190 | 189 | fmpttd 6749 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1}) |
191 | 190 | adantrr 713 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1}) |
192 | | prex 5231 |
. . . . . . . . 9
⊢ {0, 1}
∈ V |
193 | 192, 23 | elmap 8292 |
. . . . . . . 8
⊢ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑𝑚
ℙ) ↔ (𝑝 ∈
ℙ ↦ (𝑝 pCnt
𝑛)):ℙ⟶{0,
1}) |
194 | 191, 193 | sylibr 235 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑𝑚
ℙ)) |
195 | 194 | biantrurd 533 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → (𝑧 = (◡(𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑𝑚
ℙ) ∧ 𝑧 = (◡(𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1})))) |
196 | 163, 169,
195 | 3bitr4d 312 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ↔ 𝑧 = (◡(𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))) |
197 | | eqid 2797 |
. . . . . . . . 9
⊢ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) |
198 | 197 | mptiniseg 5975 |
. . . . . . . 8
⊢ (1 ∈
ℕ0 → (◡(𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1}) |
199 | 30, 198 | ax-mp 5 |
. . . . . . 7
⊢ (◡(𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} |
200 | | id 22 |
. . . . . . . . . . . 12
⊢ ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) = 1) |
201 | | 1nn 11503 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℕ |
202 | 200, 201 | syl6eqel 2893 |
. . . . . . . . . . 11
⊢ ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) ∈ ℕ) |
203 | 202, 184 | impbid2 227 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ (𝑝 pCnt 𝑛) ∈ ℕ)) |
204 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) |
205 | | pcelnn 16039 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝 ∥ 𝑛)) |
206 | 204, 15, 205 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝 ∥ 𝑛)) |
207 | 203, 206 | bitrd 280 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ 𝑝 ∥ 𝑛)) |
208 | 207 | rabbidva 3426 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛}) |
209 | 208 | adantrr 713 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛}) |
210 | 199, 209 | syl5eq 2845 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → (◡(𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛}) |
211 | 210 | eqeq2d 2807 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → (𝑧 = (◡(𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛})) |
212 | 196, 211 | bitrd 280 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0)) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛})) |
213 | 153, 157,
212 | 3bitr3d 310 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → ((◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) = 𝑛 ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛})) |
214 | 147, 213 | syl5bb 284 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) → (𝑛 = (◡𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘 ∈ 𝑧, 1, 0))) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛})) |
215 | 1, 26, 146, 214 | f1o2d 7264 |
1
⊢ (𝑁 ∈ ℕ → 𝐹:𝑆–1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |