MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqff1o Structured version   Visualization version   GIF version

Theorem sqff1o 27120
Description: There is a bijection from the squarefree divisors of a number 𝑁 to the powerset of the prime divisors of 𝑁. Among other things, this implies that a number has 2↑𝑘 squarefree divisors where 𝑘 is the number of prime divisors, and a squarefree number has 2↑𝑘 divisors (because all divisors of a squarefree number are squarefree). The inverse function to 𝐹 takes the product of all the primes in some subset of prime divisors of 𝑁. (Contributed by Mario Carneiro, 1-Jul-2015.)
Hypotheses
Ref Expression
sqff1o.1 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}
sqff1o.2 𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})
sqff1o.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
Assertion
Ref Expression
sqff1o (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
Distinct variable groups:   𝑛,𝑝,𝑥,𝐺   𝑛,𝑁,𝑝,𝑥   𝑆,𝑛,𝑝
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥,𝑛,𝑝)

Proof of Theorem sqff1o
Dummy variables 𝑘 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqff1o.2 . 2 𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})
2 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑛 → (μ‘𝑥) = (μ‘𝑛))
32neeq1d 2987 . . . . . . . . . 10 (𝑥 = 𝑛 → ((μ‘𝑥) ≠ 0 ↔ (μ‘𝑛) ≠ 0))
4 breq1 5094 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝑥𝑁𝑛𝑁))
53, 4anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑛 → (((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁) ↔ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
6 sqff1o.1 . . . . . . . . 9 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}
75, 6elrab2 3650 . . . . . . . 8 (𝑛𝑆 ↔ (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
87simprbi 496 . . . . . . 7 (𝑛𝑆 → ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))
98simprd 495 . . . . . 6 (𝑛𝑆𝑛𝑁)
109ad2antlr 727 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛𝑁)
11 prmz 16586 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1211adantl 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
13 simplr 768 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛𝑆)
1413, 7sylib 218 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
1514simpld 494 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ)
1615nnzd 12495 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℤ)
17 nnz 12489 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1817ad2antrr 726 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
19 dvdstr 16205 . . . . . 6 ((𝑝 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝑛𝑛𝑁) → 𝑝𝑁))
2012, 16, 18, 19syl3anc 1373 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑛𝑛𝑁) → 𝑝𝑁))
2110, 20mpan2d 694 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝𝑛𝑝𝑁))
2221ss2rabdv 4026 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ 𝑝𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
23 prmex 16588 . . . . 5 ℙ ∈ V
2423rabex 5277 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ V
2524elpw 4554 . . 3 ({𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
2622, 25sylibr 234 . 2 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
27 cnveq 5813 . . . . . . 7 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → 𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
2827imaeq1d 6008 . . . . . 6 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → (𝑦 “ ℕ) = ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ))
2928eleq1d 2816 . . . . 5 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → ((𝑦 “ ℕ) ∈ Fin ↔ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin))
30 1nn0 12397 . . . . . . . . . 10 1 ∈ ℕ0
31 0nn0 12396 . . . . . . . . . 10 0 ∈ ℕ0
3230, 31ifcli 4523 . . . . . . . . 9 if(𝑘𝑧, 1, 0) ∈ ℕ0
3332rgenw 3051 . . . . . . . 8 𝑘 ∈ ℙ if(𝑘𝑧, 1, 0) ∈ ℕ0
34 eqid 2731 . . . . . . . . 9 (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))
3534fmpt 7043 . . . . . . . 8 (∀𝑘 ∈ ℙ if(𝑘𝑧, 1, 0) ∈ ℕ0 ↔ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
3633, 35mpbi 230 . . . . . . 7 (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0
3736a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
38 nn0ex 12387 . . . . . . 7 0 ∈ V
3938, 23elmap 8795 . . . . . 6 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ (ℕ0m ℙ) ↔ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
4037, 39sylibr 234 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ (ℕ0m ℙ))
41 fzfi 13879 . . . . . 6 (1...𝑁) ∈ Fin
42 ffn 6651 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0 → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) Fn ℙ)
43 elpreima 6991 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) Fn ℙ → (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ)))
4436, 42, 43mp2b 10 . . . . . . . . . 10 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ))
45 elequ1 2118 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘𝑧𝑥𝑧))
4645ifbid 4499 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → if(𝑘𝑧, 1, 0) = if(𝑥𝑧, 1, 0))
4730, 31ifcli 4523 . . . . . . . . . . . . . 14 if(𝑥𝑧, 1, 0) ∈ ℕ0
4847elexi 3459 . . . . . . . . . . . . 13 if(𝑥𝑧, 1, 0) ∈ V
4946, 34, 48fvmpt 6929 . . . . . . . . . . . 12 (𝑥 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) = if(𝑥𝑧, 1, 0))
5049eleq1d 2816 . . . . . . . . . . 11 (𝑥 ∈ ℙ → (((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ ↔ if(𝑥𝑧, 1, 0) ∈ ℕ))
5150biimpa 476 . . . . . . . . . 10 ((𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ) → if(𝑥𝑧, 1, 0) ∈ ℕ)
5244, 51sylbi 217 . . . . . . . . 9 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) → if(𝑥𝑧, 1, 0) ∈ ℕ)
53 0nnn 12161 . . . . . . . . . . 11 ¬ 0 ∈ ℕ
54 iffalse 4484 . . . . . . . . . . . 12 𝑥𝑧 → if(𝑥𝑧, 1, 0) = 0)
5554eleq1d 2816 . . . . . . . . . . 11 𝑥𝑧 → (if(𝑥𝑧, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ))
5653, 55mtbiri 327 . . . . . . . . . 10 𝑥𝑧 → ¬ if(𝑥𝑧, 1, 0) ∈ ℕ)
5756con4i 114 . . . . . . . . 9 (if(𝑥𝑧, 1, 0) ∈ ℕ → 𝑥𝑧)
5852, 57syl 17 . . . . . . . 8 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) → 𝑥𝑧)
5958ssriv 3938 . . . . . . 7 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ 𝑧
60 elpwi 4557 . . . . . . . . 9 (𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
6160adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
62 prmssnn 16587 . . . . . . . . . 10 ℙ ⊆ ℕ
63 rabss2 4028 . . . . . . . . . 10 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝑁})
6462, 63ax-mp 5 . . . . . . . . 9 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝑁}
65 dvdsssfz1 16229 . . . . . . . . . 10 (𝑁 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6665adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℕ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6764, 66sstrid 3946 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6861, 67sstrd 3945 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑧 ⊆ (1...𝑁))
6959, 68sstrid 3946 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁))
70 ssfi 9082 . . . . . 6 (((1...𝑁) ∈ Fin ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁)) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin)
7141, 69, 70sylancr 587 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin)
7229, 40, 71elrabd 3649 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
73 sqff1o.3 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
74 eqid 2731 . . . . . . 7 {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} = {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}
7573, 741arith 16839 . . . . . 6 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}
76 f1ocnv 6775 . . . . . 6 (𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} → 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ)
77 f1of 6763 . . . . . 6 (𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ → 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}⟶ℕ)
7875, 76, 77mp2b 10 . . . . 5 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}⟶ℕ
7978ffvelcdmi 7016 . . . 4 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ)
8072, 79syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ)
81 f1ocnvfv2 7211 . . . . . . . . . . . 12 ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} ∧ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
8275, 72, 81sylancr 587 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
83731arithlem1 16835 . . . . . . . . . . . 12 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8480, 83syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8582, 84eqtr3d 2768 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8685fveq1d 6824 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑞) = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞))
87 elequ1 2118 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑧𝑞𝑧))
8887ifbid 4499 . . . . . . . . . 10 (𝑘 = 𝑞 → if(𝑘𝑧, 1, 0) = if(𝑞𝑧, 1, 0))
8930, 31ifcli 4523 . . . . . . . . . . 11 if(𝑞𝑧, 1, 0) ∈ ℕ0
9089elexi 3459 . . . . . . . . . 10 if(𝑞𝑧, 1, 0) ∈ V
9188, 34, 90fvmpt 6929 . . . . . . . . 9 (𝑞 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑞) = if(𝑞𝑧, 1, 0))
9286, 91sylan9req 2787 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = if(𝑞𝑧, 1, 0))
93 oveq1 7353 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
94 eqid 2731 . . . . . . . . . 10 (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
95 ovex 7379 . . . . . . . . . 10 (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ∈ V
9693, 94, 95fvmpt 6929 . . . . . . . . 9 (𝑞 ∈ ℙ → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
9796adantl 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
9892, 97eqtr3d 2768 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞𝑧, 1, 0) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
99 breq1 5094 . . . . . . . 8 (1 = if(𝑞𝑧, 1, 0) → (1 ≤ 1 ↔ if(𝑞𝑧, 1, 0) ≤ 1))
100 breq1 5094 . . . . . . . 8 (0 = if(𝑞𝑧, 1, 0) → (0 ≤ 1 ↔ if(𝑞𝑧, 1, 0) ≤ 1))
101 1le1 11745 . . . . . . . 8 1 ≤ 1
102 0le1 11640 . . . . . . . 8 0 ≤ 1
10399, 100, 101, 102keephyp 4547 . . . . . . 7 if(𝑞𝑧, 1, 0) ≤ 1
10498, 103eqbrtrrdi 5131 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1)
105104ralrimiva 3124 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1)
106 issqf 27074 . . . . . 6 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1))
10780, 106syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1))
108105, 107mpbird 257 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0)
109 iftrue 4481 . . . . . . . . . . . 12 (𝑞𝑧 → if(𝑞𝑧, 1, 0) = 1)
110109adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → if(𝑞𝑧, 1, 0) = 1)
11161sselda 3934 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
112 breq1 5094 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → (𝑝𝑁𝑞𝑁))
113112elrab 3647 . . . . . . . . . . . . . . 15 (𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑁))
114111, 113sylib 218 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → (𝑞 ∈ ℙ ∧ 𝑞𝑁))
115114simprd 495 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞𝑁)
116114simpld 494 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞 ∈ ℙ)
117 simpll 766 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑁 ∈ ℕ)
118 pcelnn 16782 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞𝑁))
119116, 117, 118syl2anc 584 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞𝑁))
120115, 119mpbird 257 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → (𝑞 pCnt 𝑁) ∈ ℕ)
121120nnge1d 12173 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 1 ≤ (𝑞 pCnt 𝑁))
122110, 121eqbrtrd 5113 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))
123122ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
124123adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
125 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
12617ad2antrr 726 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℤ)
127 pcge0 16774 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝑞 pCnt 𝑁))
128125, 126, 127syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt 𝑁))
129 iffalse 4484 . . . . . . . . . 10 𝑞𝑧 → if(𝑞𝑧, 1, 0) = 0)
130129breq1d 5101 . . . . . . . . 9 𝑞𝑧 → (if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁) ↔ 0 ≤ (𝑞 pCnt 𝑁)))
131128, 130syl5ibrcom 247 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (¬ 𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
132124, 131pm2.61d 179 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))
13398, 132eqbrtrrd 5115 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))
134133ralrimiva 3124 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))
13580nnzd 12495 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℤ)
13617adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑁 ∈ ℤ)
137 pc2dvds 16791 . . . . . 6 (((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)))
138135, 136, 137syl2anc 584 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)))
139134, 138mpbird 257 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)
140108, 139jca 511 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁))
141 fveq2 6822 . . . . . 6 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (μ‘𝑥) = (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
142141neeq1d 2987 . . . . 5 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → ((μ‘𝑥) ≠ 0 ↔ (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0))
143 breq1 5094 . . . . 5 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (𝑥𝑁 ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁))
144142, 143anbi12d 632 . . . 4 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁) ↔ ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)))
145144, 6elrab2 3650 . . 3 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ 𝑆 ↔ ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ ∧ ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)))
14680, 140, 145sylanbrc 583 . 2 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ 𝑆)
147 eqcom 2738 . . 3 (𝑛 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛)
1487simplbi 497 . . . . . . 7 (𝑛𝑆𝑛 ∈ ℕ)
149148ad2antrl 728 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑛 ∈ ℕ)
15023mptex 7157 . . . . . 6 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
15173fvmpt2 6940 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V) → (𝐺𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
152149, 150, 151sylancl 586 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝐺𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
153152eqeq1d 2733 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))
15475a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
15572adantrl 716 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
156 f1ocnvfvb 7213 . . . . 5 ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} ∧ 𝑛 ∈ ℕ ∧ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛))
157154, 149, 155, 156syl3anc 1373 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛))
15823a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ℙ ∈ V)
159 0cnd 11105 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 0 ∈ ℂ)
160 1cnd 11107 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 1 ∈ ℂ)
161 0ne1 12196 . . . . . . . 8 0 ≠ 1
162161a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 0 ≠ 1)
163158, 159, 160, 162pw2f1olem 8994 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ∧ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))))
164 ssrab2 4030 . . . . . . . . 9 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ ℙ
165164sspwi 4562 . . . . . . . 8 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ 𝒫 ℙ
166 simprr 772 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
167165, 166sselid 3932 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ 𝒫 ℙ)
168167biantrurd 532 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
169 id 22 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
170148adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → 𝑛 ∈ ℕ)
171 pccl 16761 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → (𝑝 pCnt 𝑛) ∈ ℕ0)
172169, 170, 171syl2anr 597 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ ℕ0)
173 elnn0 12383 . . . . . . . . . . . . . 14 ((𝑝 pCnt 𝑛) ∈ ℕ0 ↔ ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0))
174172, 173sylib 218 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0))
175174orcomd 871 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ))
1768simpld 494 . . . . . . . . . . . . . . . . 17 (𝑛𝑆 → (μ‘𝑛) ≠ 0)
177176adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → (μ‘𝑛) ≠ 0)
178 issqf 27074 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1))
179170, 178syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1))
180177, 179mpbid 232 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1)
181180r19.21bi 3224 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ≤ 1)
182 nnle1eq1 12155 . . . . . . . . . . . . . 14 ((𝑝 pCnt 𝑛) ∈ ℕ → ((𝑝 pCnt 𝑛) ≤ 1 ↔ (𝑝 pCnt 𝑛) = 1))
183181, 182syl5ibcom 245 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ → (𝑝 pCnt 𝑛) = 1))
184183orim2d 968 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1)))
185175, 184mpd 15 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))
186 ovex 7379 . . . . . . . . . . . 12 (𝑝 pCnt 𝑛) ∈ V
187186elpr 4601 . . . . . . . . . . 11 ((𝑝 pCnt 𝑛) ∈ {0, 1} ↔ ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))
188185, 187sylibr 234 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ {0, 1})
189188fmpttd 7048 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
190189adantrr 717 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
191 prex 5375 . . . . . . . . 9 {0, 1} ∈ V
192191, 23elmap 8795 . . . . . . . 8 ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
193190, 192sylibr 234 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ))
194193biantrurd 532 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ∧ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))))
195163, 168, 1943bitr4d 311 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1})))
196 eqid 2731 . . . . . . . . 9 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))
197196mptiniseg 6186 . . . . . . . 8 (1 ∈ ℕ0 → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1})
19830, 197ax-mp 5 . . . . . . 7 ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1}
199 id 22 . . . . . . . . . . . 12 ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) = 1)
200 1nn 12136 . . . . . . . . . . . 12 1 ∈ ℕ
201199, 200eqeltrdi 2839 . . . . . . . . . . 11 ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) ∈ ℕ)
202201, 183impbid2 226 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ (𝑝 pCnt 𝑛) ∈ ℕ))
203 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
204 pcelnn 16782 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝𝑛))
205203, 15, 204syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝𝑛))
206202, 205bitrd 279 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ 𝑝𝑛))
207206rabbidva 3401 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
208207adantrr 717 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
209198, 208eqtrid 2778 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
210209eqeq2d 2742 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
211195, 210bitrd 279 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
212153, 157, 2113bitr3d 309 . . 3 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
213147, 212bitrid 283 . 2 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑛 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
2141, 26, 146, 213f1o2d 7600 1 (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  wss 3902  ifcif 4475  𝒫 cpw 4550  {csn 4576  {cpr 4578   class class class wbr 5091  cmpt 5172  ccnv 5615  cima 5619   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  cc 11004  0cc0 11006  1c1 11007  cle 11147  cn 12125  0cn0 12381  cz 12468  ...cfz 13407  cdvds 16163  cprime 16582   pCnt cpc 16748  μcmu 27033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-mu 27039
This theorem is referenced by:  musum  27129
  Copyright terms: Public domain W3C validator