| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5129 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 |
| This theorem is referenced by: eqbrtrrdi 5159 domunsn 9141 mapdom1 9156 mapdom2 9162 pm54.43 10015 infmap2 10231 inar1 10789 gruina 10832 nn0ledivnn 13122 xltnegi 13232 leexp1a 14193 discr 14258 facwordi 14307 faclbnd3 14310 hashgt12el 14440 hashle2pr 14495 cnpart 15259 geomulcvg 15892 dvds1 16338 ramz2 17044 ramz 17045 gex1 19572 sylow2a 19600 en1top 22922 en2top 22923 hmph0 23733 ptcmplem2 23991 dscmet 24511 dscopn 24512 xrge0tsms2 24775 htpycc 24930 pcohtpylem 24970 pcopt 24973 pcopt2 24974 pcoass 24975 pcorevlem 24977 vitalilem5 25565 dvef 25936 dveq0 25957 dv11cn 25958 deg1lt0 26048 ply1rem 26123 fta1g 26127 plyremlem 26264 aalioulem3 26294 pige3ALT 26481 relogrn 26522 logneg 26549 cxpaddlelem 26713 mule1 27110 ppiub 27167 dchrabs2 27225 bposlem1 27247 zabsle1 27259 lgseisen 27342 lgsquadlem2 27344 rpvmasumlem 27450 qabvle 27588 ostth3 27601 precsexlem9 28169 nnsrecgt0d 28295 0reno 28400 colinearalg 28889 eengstr 28959 clwwlknon1le1 30082 eucrct2eupth 30226 nmosetn0 30746 nmoo0 30772 siii 30834 bcsiALT 31160 branmfn 32086 fzo0opth 32782 drngidlhash 33449 m1pmeq 33596 cos9thpiminplylem1 33816 esumrnmpt2 34099 ballotlemrc 34563 pthhashvtx 35150 subfacval3 35211 sconnpi1 35261 fz0n 35748 poimirlem31 37675 itg2addnclem 37695 ftc1anc 37725 safesnsupfidom1o 43441 radcnvrat 44338 infxr 45394 stoweidlem18 46047 stoweidlem55 46084 fourierdlem62 46197 fourierswlem 46259 exple2lt6 48339 fvconstdomi 48867 f1omoALT 48869 indthincALT 49349 |
| Copyright terms: Public domain | W3C validator |