| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5099 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: eqbrtrrdi 5129 domunsn 9040 mapdom1 9055 mapdom2 9061 pm54.43 9894 infmap2 10108 inar1 10666 gruina 10709 nn0ledivnn 13005 xltnegi 13115 leexp1a 14082 discr 14147 facwordi 14196 faclbnd3 14199 hashgt12el 14329 hashle2pr 14384 cnpart 15147 geomulcvg 15783 dvds1 16230 ramz2 16936 ramz 16937 gex1 19503 sylow2a 19531 en1top 22899 en2top 22900 hmph0 23710 ptcmplem2 23968 dscmet 24487 dscopn 24488 xrge0tsms2 24751 htpycc 24906 pcohtpylem 24946 pcopt 24949 pcopt2 24950 pcoass 24951 pcorevlem 24953 vitalilem5 25540 dvef 25911 dveq0 25932 dv11cn 25933 deg1lt0 26023 ply1rem 26098 fta1g 26102 plyremlem 26239 aalioulem3 26269 pige3ALT 26456 relogrn 26497 logneg 26524 cxpaddlelem 26688 mule1 27085 ppiub 27142 dchrabs2 27200 bposlem1 27222 zabsle1 27234 lgseisen 27317 lgsquadlem2 27319 rpvmasumlem 27425 qabvle 27563 ostth3 27576 precsexlem9 28153 nnsrecgt0d 28279 0reno 28399 colinearalg 28888 eengstr 28958 clwwlknon1le1 30081 eucrct2eupth 30225 nmosetn0 30745 nmoo0 30771 siii 30833 bcsiALT 31159 branmfn 32085 fzo0opth 32785 drngidlhash 33399 m1pmeq 33547 cos9thpiminplylem1 33795 esumrnmpt2 34081 ballotlemrc 34544 pthhashvtx 35172 subfacval3 35233 sconnpi1 35283 fz0n 35775 poimirlem31 37699 itg2addnclem 37719 ftc1anc 37749 safesnsupfidom1o 43458 radcnvrat 44355 infxr 45413 stoweidlem18 46064 stoweidlem55 46101 fourierdlem62 46214 fourierswlem 46276 exple2lt6 48403 fvconstdomi 48931 f1omoALT 48934 indthincALT 49503 |
| Copyright terms: Public domain | W3C validator |