| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5129 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 |
| This theorem is referenced by: eqbrtrrdi 5159 domunsn 9139 mapdom1 9154 mapdom2 9160 pm54.43 10013 infmap2 10229 inar1 10787 gruina 10830 nn0ledivnn 13120 xltnegi 13230 leexp1a 14191 discr 14256 facwordi 14305 faclbnd3 14308 hashgt12el 14438 hashle2pr 14493 cnpart 15257 geomulcvg 15890 dvds1 16336 ramz2 17042 ramz 17043 gex1 19570 sylow2a 19598 en1top 22920 en2top 22921 hmph0 23731 ptcmplem2 23989 dscmet 24509 dscopn 24510 xrge0tsms2 24773 htpycc 24928 pcohtpylem 24968 pcopt 24971 pcopt2 24972 pcoass 24973 pcorevlem 24975 vitalilem5 25563 dvef 25934 dveq0 25955 dv11cn 25956 deg1lt0 26046 ply1rem 26121 fta1g 26125 plyremlem 26262 aalioulem3 26292 pige3ALT 26479 relogrn 26520 logneg 26547 cxpaddlelem 26711 mule1 27108 ppiub 27165 dchrabs2 27223 bposlem1 27245 zabsle1 27257 lgseisen 27340 lgsquadlem2 27342 rpvmasumlem 27448 qabvle 27586 ostth3 27599 precsexlem9 28156 nnsrecgt0d 28273 cutpw2 28334 pw2bday 28335 0reno 28346 colinearalg 28835 eengstr 28905 clwwlknon1le1 30028 eucrct2eupth 30172 nmosetn0 30692 nmoo0 30718 siii 30780 bcsiALT 31106 branmfn 32032 fzo0opth 32728 drngidlhash 33395 m1pmeq 33542 cos9thpiminplylem1 33762 esumrnmpt2 34045 ballotlemrc 34509 pthhashvtx 35096 subfacval3 35157 sconnpi1 35207 fz0n 35694 poimirlem31 37621 itg2addnclem 37641 ftc1anc 37671 safesnsupfidom1o 43388 radcnvrat 44286 infxr 45342 stoweidlem18 45995 stoweidlem55 46032 fourierdlem62 46145 fourierswlem 46207 exple2lt6 48287 fvconstdomi 48815 f1omoALT 48817 indthincALT 49297 |
| Copyright terms: Public domain | W3C validator |