| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5112 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: eqbrtrrdi 5142 domunsn 9068 mapdom1 9083 mapdom2 9089 pm54.43 9930 infmap2 10146 inar1 10704 gruina 10747 nn0ledivnn 13042 xltnegi 13152 leexp1a 14116 discr 14181 facwordi 14230 faclbnd3 14233 hashgt12el 14363 hashle2pr 14418 cnpart 15182 geomulcvg 15818 dvds1 16265 ramz2 16971 ramz 16972 gex1 19497 sylow2a 19525 en1top 22847 en2top 22848 hmph0 23658 ptcmplem2 23916 dscmet 24436 dscopn 24437 xrge0tsms2 24700 htpycc 24855 pcohtpylem 24895 pcopt 24898 pcopt2 24899 pcoass 24900 pcorevlem 24902 vitalilem5 25489 dvef 25860 dveq0 25881 dv11cn 25882 deg1lt0 25972 ply1rem 26047 fta1g 26051 plyremlem 26188 aalioulem3 26218 pige3ALT 26405 relogrn 26446 logneg 26473 cxpaddlelem 26637 mule1 27034 ppiub 27091 dchrabs2 27149 bposlem1 27171 zabsle1 27183 lgseisen 27266 lgsquadlem2 27268 rpvmasumlem 27374 qabvle 27512 ostth3 27525 precsexlem9 28093 nnsrecgt0d 28219 0reno 28324 colinearalg 28813 eengstr 28883 clwwlknon1le1 30003 eucrct2eupth 30147 nmosetn0 30667 nmoo0 30693 siii 30755 bcsiALT 31081 branmfn 32007 fzo0opth 32701 drngidlhash 33378 m1pmeq 33525 cos9thpiminplylem1 33745 esumrnmpt2 34031 ballotlemrc 34495 pthhashvtx 35088 subfacval3 35149 sconnpi1 35199 fz0n 35691 poimirlem31 37618 itg2addnclem 37638 ftc1anc 37668 safesnsupfidom1o 43379 radcnvrat 44276 infxr 45336 stoweidlem18 45989 stoweidlem55 46026 fourierdlem62 46139 fourierswlem 46201 exple2lt6 48325 fvconstdomi 48853 f1omoALT 48856 indthincALT 49425 |
| Copyright terms: Public domain | W3C validator |