| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5117 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: eqbrtrrdi 5147 domunsn 9091 mapdom1 9106 mapdom2 9112 pm54.43 9954 infmap2 10170 inar1 10728 gruina 10771 nn0ledivnn 13066 xltnegi 13176 leexp1a 14140 discr 14205 facwordi 14254 faclbnd3 14257 hashgt12el 14387 hashle2pr 14442 cnpart 15206 geomulcvg 15842 dvds1 16289 ramz2 16995 ramz 16996 gex1 19521 sylow2a 19549 en1top 22871 en2top 22872 hmph0 23682 ptcmplem2 23940 dscmet 24460 dscopn 24461 xrge0tsms2 24724 htpycc 24879 pcohtpylem 24919 pcopt 24922 pcopt2 24923 pcoass 24924 pcorevlem 24926 vitalilem5 25513 dvef 25884 dveq0 25905 dv11cn 25906 deg1lt0 25996 ply1rem 26071 fta1g 26075 plyremlem 26212 aalioulem3 26242 pige3ALT 26429 relogrn 26470 logneg 26497 cxpaddlelem 26661 mule1 27058 ppiub 27115 dchrabs2 27173 bposlem1 27195 zabsle1 27207 lgseisen 27290 lgsquadlem2 27292 rpvmasumlem 27398 qabvle 27536 ostth3 27549 precsexlem9 28117 nnsrecgt0d 28243 0reno 28348 colinearalg 28837 eengstr 28907 clwwlknon1le1 30030 eucrct2eupth 30174 nmosetn0 30694 nmoo0 30720 siii 30782 bcsiALT 31108 branmfn 32034 fzo0opth 32728 drngidlhash 33405 m1pmeq 33552 cos9thpiminplylem1 33772 esumrnmpt2 34058 ballotlemrc 34522 pthhashvtx 35115 subfacval3 35176 sconnpi1 35226 fz0n 35718 poimirlem31 37645 itg2addnclem 37665 ftc1anc 37695 safesnsupfidom1o 43406 radcnvrat 44303 infxr 45363 stoweidlem18 46016 stoweidlem55 46053 fourierdlem62 46166 fourierswlem 46228 exple2lt6 48352 fvconstdomi 48880 f1omoALT 48883 indthincALT 49452 |
| Copyright terms: Public domain | W3C validator |