| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5102 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: eqbrtrrdi 5132 domunsn 9044 mapdom1 9059 mapdom2 9065 pm54.43 9897 infmap2 10111 inar1 10669 gruina 10712 nn0ledivnn 13008 xltnegi 13118 leexp1a 14082 discr 14147 facwordi 14196 faclbnd3 14199 hashgt12el 14329 hashle2pr 14384 cnpart 15147 geomulcvg 15783 dvds1 16230 ramz2 16936 ramz 16937 gex1 19470 sylow2a 19498 en1top 22869 en2top 22870 hmph0 23680 ptcmplem2 23938 dscmet 24458 dscopn 24459 xrge0tsms2 24722 htpycc 24877 pcohtpylem 24917 pcopt 24920 pcopt2 24921 pcoass 24922 pcorevlem 24924 vitalilem5 25511 dvef 25882 dveq0 25903 dv11cn 25904 deg1lt0 25994 ply1rem 26069 fta1g 26073 plyremlem 26210 aalioulem3 26240 pige3ALT 26427 relogrn 26468 logneg 26495 cxpaddlelem 26659 mule1 27056 ppiub 27113 dchrabs2 27171 bposlem1 27193 zabsle1 27205 lgseisen 27288 lgsquadlem2 27290 rpvmasumlem 27396 qabvle 27534 ostth3 27547 precsexlem9 28122 nnsrecgt0d 28248 0reno 28366 colinearalg 28855 eengstr 28925 clwwlknon1le1 30045 eucrct2eupth 30189 nmosetn0 30709 nmoo0 30735 siii 30797 bcsiALT 31123 branmfn 32049 fzo0opth 32748 drngidlhash 33371 m1pmeq 33519 cos9thpiminplylem1 33749 esumrnmpt2 34035 ballotlemrc 34499 pthhashvtx 35101 subfacval3 35162 sconnpi1 35212 fz0n 35704 poimirlem31 37631 itg2addnclem 37651 ftc1anc 37681 safesnsupfidom1o 43390 radcnvrat 44287 infxr 45346 stoweidlem18 45999 stoweidlem55 46036 fourierdlem62 46149 fourierswlem 46211 exple2lt6 48348 fvconstdomi 48876 f1omoALT 48879 indthincALT 49448 |
| Copyright terms: Public domain | W3C validator |