| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5120 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: eqbrtrrdi 5150 domunsn 9097 mapdom1 9112 mapdom2 9118 pm54.43 9961 infmap2 10177 inar1 10735 gruina 10778 nn0ledivnn 13073 xltnegi 13183 leexp1a 14147 discr 14212 facwordi 14261 faclbnd3 14264 hashgt12el 14394 hashle2pr 14449 cnpart 15213 geomulcvg 15849 dvds1 16296 ramz2 17002 ramz 17003 gex1 19528 sylow2a 19556 en1top 22878 en2top 22879 hmph0 23689 ptcmplem2 23947 dscmet 24467 dscopn 24468 xrge0tsms2 24731 htpycc 24886 pcohtpylem 24926 pcopt 24929 pcopt2 24930 pcoass 24931 pcorevlem 24933 vitalilem5 25520 dvef 25891 dveq0 25912 dv11cn 25913 deg1lt0 26003 ply1rem 26078 fta1g 26082 plyremlem 26219 aalioulem3 26249 pige3ALT 26436 relogrn 26477 logneg 26504 cxpaddlelem 26668 mule1 27065 ppiub 27122 dchrabs2 27180 bposlem1 27202 zabsle1 27214 lgseisen 27297 lgsquadlem2 27299 rpvmasumlem 27405 qabvle 27543 ostth3 27556 precsexlem9 28124 nnsrecgt0d 28250 0reno 28355 colinearalg 28844 eengstr 28914 clwwlknon1le1 30037 eucrct2eupth 30181 nmosetn0 30701 nmoo0 30727 siii 30789 bcsiALT 31115 branmfn 32041 fzo0opth 32735 drngidlhash 33412 m1pmeq 33559 cos9thpiminplylem1 33779 esumrnmpt2 34065 ballotlemrc 34529 pthhashvtx 35122 subfacval3 35183 sconnpi1 35233 fz0n 35725 poimirlem31 37652 itg2addnclem 37672 ftc1anc 37702 safesnsupfidom1o 43413 radcnvrat 44310 infxr 45370 stoweidlem18 46023 stoweidlem55 46060 fourierdlem62 46173 fourierswlem 46235 exple2lt6 48356 fvconstdomi 48884 f1omoALT 48887 indthincALT 49456 |
| Copyright terms: Public domain | W3C validator |