Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 5080 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mpbiri 257 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: eqbrtrrdi 5110 domunsn 8863 mapdom1 8878 mapdom2 8884 pm54.43 9690 infmap2 9905 inar1 10462 gruina 10505 nn0ledivnn 12772 xltnegi 12879 leexp1a 13821 discr 13883 facwordi 13931 faclbnd3 13934 hashgt12el 14065 hashle2pr 14119 cnpart 14879 geomulcvg 15516 dvds1 15956 ramz2 16653 ramz 16654 gex1 19111 sylow2a 19139 en1top 22042 en2top 22043 hmph0 22854 ptcmplem2 23112 dscmet 23634 dscopn 23635 xrge0tsms2 23904 htpycc 24049 pcohtpylem 24088 pcopt 24091 pcopt2 24092 pcoass 24093 pcorevlem 24095 vitalilem5 24681 dvef 25049 dveq0 25069 dv11cn 25070 deg1lt0 25161 ply1rem 25233 fta1g 25237 plyremlem 25369 aalioulem3 25399 pige3ALT 25581 relogrn 25622 logneg 25648 cxpaddlelem 25809 mule1 26202 ppiub 26257 dchrabs2 26315 bposlem1 26337 zabsle1 26349 lgseisen 26432 lgsquadlem2 26434 rpvmasumlem 26540 qabvle 26678 ostth3 26691 colinearalg 27181 eengstr 27251 clwwlknon1le1 28366 eucrct2eupth 28510 nmosetn0 29028 nmoo0 29054 siii 29116 bcsiALT 29442 branmfn 30368 esumrnmpt2 31936 ballotlemrc 32397 pthhashvtx 32989 subfacval3 33051 sconnpi1 33101 fz0n 33602 poimirlem31 35735 itg2addnclem 35755 ftc1anc 35785 radcnvrat 41821 infxr 42796 stoweidlem18 43449 stoweidlem55 43486 fourierdlem62 43599 fourierswlem 43661 exple2lt6 45588 fvconstdomi 46075 f1omoALT 46077 indthincALT 46222 |
Copyright terms: Public domain | W3C validator |