Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 5084 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mpbiri 257 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 |
This theorem is referenced by: eqbrtrrdi 5114 domunsn 8914 mapdom1 8929 mapdom2 8935 pm54.43 9759 infmap2 9974 inar1 10531 gruina 10574 nn0ledivnn 12843 xltnegi 12950 leexp1a 13893 discr 13955 facwordi 14003 faclbnd3 14006 hashgt12el 14137 hashle2pr 14191 cnpart 14951 geomulcvg 15588 dvds1 16028 ramz2 16725 ramz 16726 gex1 19196 sylow2a 19224 en1top 22134 en2top 22135 hmph0 22946 ptcmplem2 23204 dscmet 23728 dscopn 23729 xrge0tsms2 23998 htpycc 24143 pcohtpylem 24182 pcopt 24185 pcopt2 24186 pcoass 24187 pcorevlem 24189 vitalilem5 24776 dvef 25144 dveq0 25164 dv11cn 25165 deg1lt0 25256 ply1rem 25328 fta1g 25332 plyremlem 25464 aalioulem3 25494 pige3ALT 25676 relogrn 25717 logneg 25743 cxpaddlelem 25904 mule1 26297 ppiub 26352 dchrabs2 26410 bposlem1 26432 zabsle1 26444 lgseisen 26527 lgsquadlem2 26529 rpvmasumlem 26635 qabvle 26773 ostth3 26786 colinearalg 27278 eengstr 27348 clwwlknon1le1 28465 eucrct2eupth 28609 nmosetn0 29127 nmoo0 29153 siii 29215 bcsiALT 29541 branmfn 30467 esumrnmpt2 32036 ballotlemrc 32497 pthhashvtx 33089 subfacval3 33151 sconnpi1 33201 fz0n 33696 poimirlem31 35808 itg2addnclem 35828 ftc1anc 35858 radcnvrat 41932 infxr 42906 stoweidlem18 43559 stoweidlem55 43596 fourierdlem62 43709 fourierswlem 43771 exple2lt6 45700 fvconstdomi 46187 f1omoALT 46189 indthincALT 46334 |
Copyright terms: Public domain | W3C validator |