![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 5158 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 |
This theorem is referenced by: eqbrtrrdi 5188 domunsn 9166 mapdom1 9181 mapdom2 9187 pm54.43 10039 infmap2 10255 inar1 10813 gruina 10856 nn0ledivnn 13146 xltnegi 13255 leexp1a 14212 discr 14276 facwordi 14325 faclbnd3 14328 hashgt12el 14458 hashle2pr 14513 cnpart 15276 geomulcvg 15909 dvds1 16353 ramz2 17058 ramz 17059 gex1 19624 sylow2a 19652 en1top 23007 en2top 23008 hmph0 23819 ptcmplem2 24077 dscmet 24601 dscopn 24602 xrge0tsms2 24871 htpycc 25026 pcohtpylem 25066 pcopt 25069 pcopt2 25070 pcoass 25071 pcorevlem 25073 vitalilem5 25661 dvef 26033 dveq0 26054 dv11cn 26055 deg1lt0 26145 ply1rem 26220 fta1g 26224 plyremlem 26361 aalioulem3 26391 pige3ALT 26577 relogrn 26618 logneg 26645 cxpaddlelem 26809 mule1 27206 ppiub 27263 dchrabs2 27321 bposlem1 27343 zabsle1 27355 lgseisen 27438 lgsquadlem2 27440 rpvmasumlem 27546 qabvle 27684 ostth3 27697 precsexlem9 28254 nnsrecgt0d 28371 cutpw2 28432 pw2bday 28433 0reno 28444 colinearalg 28940 eengstr 29010 clwwlknon1le1 30130 eucrct2eupth 30274 nmosetn0 30794 nmoo0 30820 siii 30882 bcsiALT 31208 branmfn 32134 fzo0opth 32813 drngidlhash 33442 m1pmeq 33588 esumrnmpt2 34049 ballotlemrc 34512 pthhashvtx 35112 subfacval3 35174 sconnpi1 35224 fz0n 35711 poimirlem31 37638 itg2addnclem 37658 ftc1anc 37688 safesnsupfidom1o 43407 radcnvrat 44310 infxr 45317 stoweidlem18 45974 stoweidlem55 46011 fourierdlem62 46124 fourierswlem 46186 exple2lt6 48209 fvconstdomi 48690 f1omoALT 48692 indthincALT 48854 |
Copyright terms: Public domain | W3C validator |