![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 5162 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mpbiri 257 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 class class class wbr 5152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 |
This theorem is referenced by: eqbrtrrdi 5192 domunsn 9158 mapdom1 9173 mapdom2 9179 pm54.43 10032 infmap2 10249 inar1 10806 gruina 10849 nn0ledivnn 13127 xltnegi 13235 leexp1a 14179 discr 14242 facwordi 14288 faclbnd3 14291 hashgt12el 14421 hashle2pr 14478 cnpart 15227 geomulcvg 15862 dvds1 16303 ramz2 17000 ramz 17001 gex1 19553 sylow2a 19581 en1top 22907 en2top 22908 hmph0 23719 ptcmplem2 23977 dscmet 24501 dscopn 24502 xrge0tsms2 24771 htpycc 24926 pcohtpylem 24966 pcopt 24969 pcopt2 24970 pcoass 24971 pcorevlem 24973 vitalilem5 25561 dvef 25932 dveq0 25953 dv11cn 25954 deg1lt0 26047 ply1rem 26120 fta1g 26124 plyremlem 26259 aalioulem3 26289 pige3ALT 26474 relogrn 26515 logneg 26542 cxpaddlelem 26706 mule1 27100 ppiub 27157 dchrabs2 27215 bposlem1 27237 zabsle1 27249 lgseisen 27332 lgsquadlem2 27334 rpvmasumlem 27440 qabvle 27578 ostth3 27591 precsexlem9 28133 nnsrecgt0d 28239 0reno 28245 colinearalg 28741 eengstr 28811 clwwlknon1le1 29931 eucrct2eupth 30075 nmosetn0 30595 nmoo0 30621 siii 30683 bcsiALT 31009 branmfn 31935 drngidlhash 33175 m1pmeq 33294 esumrnmpt2 33720 ballotlemrc 34183 pthhashvtx 34770 subfacval3 34832 sconnpi1 34882 fz0n 35358 poimirlem31 37157 itg2addnclem 37177 ftc1anc 37207 safesnsupfidom1o 42878 radcnvrat 43782 infxr 44778 stoweidlem18 45435 stoweidlem55 45472 fourierdlem62 45585 fourierswlem 45647 exple2lt6 47506 fvconstdomi 47990 f1omoALT 47992 indthincALT 48137 |
Copyright terms: Public domain | W3C validator |