| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5112 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: eqbrtrrdi 5142 domunsn 9068 mapdom1 9083 mapdom2 9089 pm54.43 9930 infmap2 10146 inar1 10704 gruina 10747 nn0ledivnn 13042 xltnegi 13152 leexp1a 14116 discr 14181 facwordi 14230 faclbnd3 14233 hashgt12el 14363 hashle2pr 14418 cnpart 15182 geomulcvg 15818 dvds1 16265 ramz2 16971 ramz 16972 gex1 19505 sylow2a 19533 en1top 22904 en2top 22905 hmph0 23715 ptcmplem2 23973 dscmet 24493 dscopn 24494 xrge0tsms2 24757 htpycc 24912 pcohtpylem 24952 pcopt 24955 pcopt2 24956 pcoass 24957 pcorevlem 24959 vitalilem5 25546 dvef 25917 dveq0 25938 dv11cn 25939 deg1lt0 26029 ply1rem 26104 fta1g 26108 plyremlem 26245 aalioulem3 26275 pige3ALT 26462 relogrn 26503 logneg 26530 cxpaddlelem 26694 mule1 27091 ppiub 27148 dchrabs2 27206 bposlem1 27228 zabsle1 27240 lgseisen 27323 lgsquadlem2 27325 rpvmasumlem 27431 qabvle 27569 ostth3 27582 precsexlem9 28157 nnsrecgt0d 28283 0reno 28401 colinearalg 28890 eengstr 28960 clwwlknon1le1 30080 eucrct2eupth 30224 nmosetn0 30744 nmoo0 30770 siii 30832 bcsiALT 31158 branmfn 32084 fzo0opth 32778 drngidlhash 33398 m1pmeq 33545 cos9thpiminplylem1 33765 esumrnmpt2 34051 ballotlemrc 34515 pthhashvtx 35108 subfacval3 35169 sconnpi1 35219 fz0n 35711 poimirlem31 37638 itg2addnclem 37658 ftc1anc 37688 safesnsupfidom1o 43399 radcnvrat 44296 infxr 45356 stoweidlem18 46009 stoweidlem55 46046 fourierdlem62 46159 fourierswlem 46221 exple2lt6 48345 fvconstdomi 48873 f1omoALT 48876 indthincALT 49445 |
| Copyright terms: Public domain | W3C validator |