Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrinitorngc Structured version   Visualization version   GIF version

Theorem zrinitorngc 46888
Description: The zero ring is an initial object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
zrinitorngc.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
zrinitorngc.c 𝐢 = (RngCatβ€˜π‘ˆ)
zrinitorngc.z (πœ‘ β†’ 𝑍 ∈ (Ring βˆ– NzRing))
zrinitorngc.e (πœ‘ β†’ 𝑍 ∈ π‘ˆ)
Assertion
Ref Expression
zrinitorngc (πœ‘ β†’ 𝑍 ∈ (InitOβ€˜πΆ))

Proof of Theorem zrinitorngc
Dummy variables π‘Ž β„Ž π‘Ÿ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zrinitorngc.c . . . . . . . . . 10 𝐢 = (RngCatβ€˜π‘ˆ)
2 eqid 2732 . . . . . . . . . 10 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
3 zrinitorngc.u . . . . . . . . . 10 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
41, 2, 3rngcbas 46853 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜πΆ) = (π‘ˆ ∩ Rng))
54eleq2d 2819 . . . . . . . 8 (πœ‘ β†’ (π‘Ÿ ∈ (Baseβ€˜πΆ) ↔ π‘Ÿ ∈ (π‘ˆ ∩ Rng)))
6 elin 3964 . . . . . . . . 9 (π‘Ÿ ∈ (π‘ˆ ∩ Rng) ↔ (π‘Ÿ ∈ π‘ˆ ∧ π‘Ÿ ∈ Rng))
76simprbi 497 . . . . . . . 8 (π‘Ÿ ∈ (π‘ˆ ∩ Rng) β†’ π‘Ÿ ∈ Rng)
85, 7syl6bi 252 . . . . . . 7 (πœ‘ β†’ (π‘Ÿ ∈ (Baseβ€˜πΆ) β†’ π‘Ÿ ∈ Rng))
98imp 407 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘Ÿ ∈ Rng)
10 zrinitorngc.z . . . . . . 7 (πœ‘ β†’ 𝑍 ∈ (Ring βˆ– NzRing))
1110adantr 481 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ 𝑍 ∈ (Ring βˆ– NzRing))
12 eqid 2732 . . . . . . 7 (Baseβ€˜π‘) = (Baseβ€˜π‘)
13 eqid 2732 . . . . . . 7 (0gβ€˜π‘Ÿ) = (0gβ€˜π‘Ÿ)
14 eqid 2732 . . . . . . 7 (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))
1512, 13, 14zrrnghm 46706 . . . . . 6 ((π‘Ÿ ∈ Rng ∧ 𝑍 ∈ (Ring βˆ– NzRing)) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ))
169, 11, 15syl2anc 584 . . . . 5 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ))
17 simpr 485 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ))
183adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘ˆ ∈ 𝑉)
19 eqid 2732 . . . . . . . . . 10 (Hom β€˜πΆ) = (Hom β€˜πΆ)
20 zrinitorngc.e . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ π‘ˆ)
21 eldifi 4126 . . . . . . . . . . . . . 14 (𝑍 ∈ (Ring βˆ– NzRing) β†’ 𝑍 ∈ Ring)
22 ringrng 46645 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring β†’ 𝑍 ∈ Rng)
2310, 21, 223syl 18 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ Rng)
2420, 23elind 4194 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑍 ∈ (π‘ˆ ∩ Rng))
2524, 4eleqtrrd 2836 . . . . . . . . . . 11 (πœ‘ β†’ 𝑍 ∈ (Baseβ€˜πΆ))
2625adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ 𝑍 ∈ (Baseβ€˜πΆ))
27 simpr 485 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘Ÿ ∈ (Baseβ€˜πΆ))
281, 2, 18, 19, 26, 27rngchom 46855 . . . . . . . . 9 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (𝑍(Hom β€˜πΆ)π‘Ÿ) = (𝑍 RngHomo π‘Ÿ))
2928eqcomd 2738 . . . . . . . 8 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (𝑍 RngHomo π‘Ÿ) = (𝑍(Hom β€˜πΆ)π‘Ÿ))
3029eleq2d 2819 . . . . . . 7 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ) ↔ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)))
3130biimpa 477 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ))
3228eleq2d 2819 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) ↔ β„Ž ∈ (𝑍 RngHomo π‘Ÿ)))
33 eqid 2732 . . . . . . . . . . . . 13 (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘Ÿ)
3412, 33rnghmf 46687 . . . . . . . . . . . 12 (β„Ž ∈ (𝑍 RngHomo π‘Ÿ) β†’ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ))
3532, 34syl6bi 252 . . . . . . . . . . 11 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)))
3635imp 407 . . . . . . . . . 10 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) β†’ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ))
37 ffn 6717 . . . . . . . . . . . 12 (β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ) β†’ β„Ž Fn (Baseβ€˜π‘))
3837adantl 482 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) β†’ β„Ž Fn (Baseβ€˜π‘))
39 fvex 6904 . . . . . . . . . . . . 13 (0gβ€˜π‘Ÿ) ∈ V
4039, 14fnmpti 6693 . . . . . . . . . . . 12 (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) Fn (Baseβ€˜π‘)
4140a1i 11 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) Fn (Baseβ€˜π‘))
4232biimpa 477 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) β†’ β„Ž ∈ (𝑍 RngHomo π‘Ÿ))
43 rnghmghm 46686 . . . . . . . . . . . . . 14 (β„Ž ∈ (𝑍 RngHomo π‘Ÿ) β†’ β„Ž ∈ (𝑍 GrpHom π‘Ÿ))
44 eqid 2732 . . . . . . . . . . . . . . 15 (0gβ€˜π‘) = (0gβ€˜π‘)
4544, 13ghmid 19097 . . . . . . . . . . . . . 14 (β„Ž ∈ (𝑍 GrpHom π‘Ÿ) β†’ (β„Žβ€˜(0gβ€˜π‘)) = (0gβ€˜π‘Ÿ))
4642, 43, 453syl 18 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) β†’ (β„Žβ€˜(0gβ€˜π‘)) = (0gβ€˜π‘Ÿ))
4746ad2antrr 724 . . . . . . . . . . . 12 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) ∧ π‘Ž ∈ (Baseβ€˜π‘)) β†’ (β„Žβ€˜(0gβ€˜π‘)) = (0gβ€˜π‘Ÿ))
4812, 440ringbas 46635 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ (Ring βˆ– NzRing) β†’ (Baseβ€˜π‘) = {(0gβ€˜π‘)})
4910, 48syl 17 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (Baseβ€˜π‘) = {(0gβ€˜π‘)})
5049eleq2d 2819 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (π‘Ž ∈ (Baseβ€˜π‘) ↔ π‘Ž ∈ {(0gβ€˜π‘)}))
51 elsni 4645 . . . . . . . . . . . . . . . . 17 (π‘Ž ∈ {(0gβ€˜π‘)} β†’ π‘Ž = (0gβ€˜π‘))
5251fveq2d 6895 . . . . . . . . . . . . . . . 16 (π‘Ž ∈ {(0gβ€˜π‘)} β†’ (β„Žβ€˜π‘Ž) = (β„Žβ€˜(0gβ€˜π‘)))
5350, 52syl6bi 252 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (π‘Ž ∈ (Baseβ€˜π‘) β†’ (β„Žβ€˜π‘Ž) = (β„Žβ€˜(0gβ€˜π‘))))
5453adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (π‘Ž ∈ (Baseβ€˜π‘) β†’ (β„Žβ€˜π‘Ž) = (β„Žβ€˜(0gβ€˜π‘))))
5554ad2antrr 724 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) β†’ (π‘Ž ∈ (Baseβ€˜π‘) β†’ (β„Žβ€˜π‘Ž) = (β„Žβ€˜(0gβ€˜π‘))))
5655imp 407 . . . . . . . . . . . 12 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) ∧ π‘Ž ∈ (Baseβ€˜π‘)) β†’ (β„Žβ€˜π‘Ž) = (β„Žβ€˜(0gβ€˜π‘)))
57 eqidd 2733 . . . . . . . . . . . . . 14 (π‘Ž ∈ (Baseβ€˜π‘) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))
58 eqidd 2733 . . . . . . . . . . . . . 14 ((π‘Ž ∈ (Baseβ€˜π‘) ∧ π‘₯ = π‘Ž) β†’ (0gβ€˜π‘Ÿ) = (0gβ€˜π‘Ÿ))
59 id 22 . . . . . . . . . . . . . 14 (π‘Ž ∈ (Baseβ€˜π‘) β†’ π‘Ž ∈ (Baseβ€˜π‘))
6039a1i 11 . . . . . . . . . . . . . 14 (π‘Ž ∈ (Baseβ€˜π‘) β†’ (0gβ€˜π‘Ÿ) ∈ V)
6157, 58, 59, 60fvmptd 7005 . . . . . . . . . . . . 13 (π‘Ž ∈ (Baseβ€˜π‘) β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))β€˜π‘Ž) = (0gβ€˜π‘Ÿ))
6261adantl 482 . . . . . . . . . . . 12 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) ∧ π‘Ž ∈ (Baseβ€˜π‘)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))β€˜π‘Ž) = (0gβ€˜π‘Ÿ))
6347, 56, 623eqtr4d 2782 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) ∧ π‘Ž ∈ (Baseβ€˜π‘)) β†’ (β„Žβ€˜π‘Ž) = ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))β€˜π‘Ž))
6438, 41, 63eqfnfvd 7035 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))
6536, 64mpdan 685 . . . . . . . . 9 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))
6665ex 413 . . . . . . . 8 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))))
6766adantr 481 . . . . . . 7 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ)) β†’ (β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))))
6867alrimiv 1930 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ)) β†’ βˆ€β„Ž(β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))))
6917, 31, 683jca 1128 . . . . 5 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) ∧ βˆ€β„Ž(β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))))
7016, 69mpdan 685 . . . 4 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) ∧ βˆ€β„Ž(β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))))
71 eleq1 2821 . . . . 5 (β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) β†’ (β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) ↔ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)))
7271eqeu 3702 . . . 4 (((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHomo π‘Ÿ) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) ∧ βˆ€β„Ž(β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))) β†’ βˆƒ!β„Ž β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ))
7370, 72syl 17 . . 3 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ βˆƒ!β„Ž β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ))
7473ralrimiva 3146 . 2 (πœ‘ β†’ βˆ€π‘Ÿ ∈ (Baseβ€˜πΆ)βˆƒ!β„Ž β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ))
751rngccat 46866 . . . 4 (π‘ˆ ∈ 𝑉 β†’ 𝐢 ∈ Cat)
763, 75syl 17 . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
772, 19, 76, 25isinito 17945 . 2 (πœ‘ β†’ (𝑍 ∈ (InitOβ€˜πΆ) ↔ βˆ€π‘Ÿ ∈ (Baseβ€˜πΆ)βˆƒ!β„Ž β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)))
7874, 77mpbird 256 1 (πœ‘ β†’ 𝑍 ∈ (InitOβ€˜πΆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  βˆƒ!weu 2562  βˆ€wral 3061  Vcvv 3474   βˆ– cdif 3945   ∩ cin 3947  {csn 4628   ↦ cmpt 5231   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  Hom chom 17207  0gc0g 17384  Catccat 17607  InitOcinito 17930   GrpHom cghm 19088  Ringcrg 20055  NzRingcnzr 20290  Rngcrng 46638   RngHomo crngh 46673  RngCatcrngc 46845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-er 8702  df-map 8821  df-pm 8822  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-xnn0 12544  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-hash 14290  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-hom 17220  df-cco 17221  df-0g 17386  df-cat 17611  df-cid 17612  df-homf 17613  df-ssc 17756  df-resc 17757  df-subc 17758  df-inito 17933  df-estrc 18073  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-mhm 18670  df-grp 18821  df-minusg 18822  df-ghm 19089  df-cmn 19649  df-abl 19650  df-mgp 19987  df-ur 20004  df-ring 20057  df-nzr 20291  df-mgmhm 46539  df-rng 46639  df-rnghomo 46675  df-rngc 46847
This theorem is referenced by:  zrzeroorngc  46890
  Copyright terms: Public domain W3C validator