Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrinitorngc Structured version   Visualization version   GIF version

Theorem zrinitorngc 44624
Description: The zero ring is an initial object in the category of nonunital rings. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
zrinitorngc.u (𝜑𝑈𝑉)
zrinitorngc.c 𝐶 = (RngCat‘𝑈)
zrinitorngc.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
zrinitorngc.e (𝜑𝑍𝑈)
Assertion
Ref Expression
zrinitorngc (𝜑𝑍 ∈ (InitO‘𝐶))

Proof of Theorem zrinitorngc
Dummy variables 𝑎 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zrinitorngc.c . . . . . . . . . 10 𝐶 = (RngCat‘𝑈)
2 eqid 2798 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
3 zrinitorngc.u . . . . . . . . . 10 (𝜑𝑈𝑉)
41, 2, 3rngcbas 44589 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
54eleq2d 2875 . . . . . . . 8 (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Rng)))
6 elin 3897 . . . . . . . . 9 (𝑟 ∈ (𝑈 ∩ Rng) ↔ (𝑟𝑈𝑟 ∈ Rng))
76simprbi 500 . . . . . . . 8 (𝑟 ∈ (𝑈 ∩ Rng) → 𝑟 ∈ Rng)
85, 7syl6bi 256 . . . . . . 7 (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Rng))
98imp 410 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Rng)
10 zrinitorngc.z . . . . . . 7 (𝜑𝑍 ∈ (Ring ∖ NzRing))
1110adantr 484 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing))
12 eqid 2798 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
13 eqid 2798 . . . . . . 7 (0g𝑟) = (0g𝑟)
14 eqid 2798 . . . . . . 7 (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))
1512, 13, 14zrrnghm 44541 . . . . . 6 ((𝑟 ∈ Rng ∧ 𝑍 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟))
169, 11, 15syl2anc 587 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟))
17 simpr 488 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟)) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟))
183adantr 484 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑈𝑉)
19 eqid 2798 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
20 zrinitorngc.e . . . . . . . . . . . . 13 (𝜑𝑍𝑈)
21 eldifi 4054 . . . . . . . . . . . . . 14 (𝑍 ∈ (Ring ∖ NzRing) → 𝑍 ∈ Ring)
22 ringrng 44503 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring → 𝑍 ∈ Rng)
2310, 21, 223syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ Rng)
2420, 23elind 4121 . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑈 ∩ Rng))
2524, 4eleqtrrd 2893 . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
2625adantr 484 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Base‘𝐶))
27 simpr 488 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶))
281, 2, 18, 19, 26, 27rngchom 44591 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑍(Hom ‘𝐶)𝑟) = (𝑍 RngHomo 𝑟))
2928eqcomd 2804 . . . . . . . 8 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑍 RngHomo 𝑟) = (𝑍(Hom ‘𝐶)𝑟))
3029eleq2d 2875 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟) ↔ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟)))
3130biimpa 480 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟)) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟))
3228eleq2d 2875 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ∈ (𝑍 RngHomo 𝑟)))
33 eqid 2798 . . . . . . . . . . . . 13 (Base‘𝑟) = (Base‘𝑟)
3412, 33rnghmf 44523 . . . . . . . . . . . 12 ( ∈ (𝑍 RngHomo 𝑟) → :(Base‘𝑍)⟶(Base‘𝑟))
3532, 34syl6bi 256 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑍(Hom ‘𝐶)𝑟) → :(Base‘𝑍)⟶(Base‘𝑟)))
3635imp 410 . . . . . . . . . 10 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) → :(Base‘𝑍)⟶(Base‘𝑟))
37 ffn 6487 . . . . . . . . . . . 12 (:(Base‘𝑍)⟶(Base‘𝑟) → Fn (Base‘𝑍))
3837adantl 485 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) → Fn (Base‘𝑍))
39 fvex 6658 . . . . . . . . . . . . 13 (0g𝑟) ∈ V
4039, 14fnmpti 6463 . . . . . . . . . . . 12 (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) Fn (Base‘𝑍)
4140a1i 11 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) Fn (Base‘𝑍))
4232biimpa 480 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) → ∈ (𝑍 RngHomo 𝑟))
43 rnghmghm 44522 . . . . . . . . . . . . . 14 ( ∈ (𝑍 RngHomo 𝑟) → ∈ (𝑍 GrpHom 𝑟))
44 eqid 2798 . . . . . . . . . . . . . . 15 (0g𝑍) = (0g𝑍)
4544, 13ghmid 18356 . . . . . . . . . . . . . 14 ( ∈ (𝑍 GrpHom 𝑟) → (‘(0g𝑍)) = (0g𝑟))
4642, 43, 453syl 18 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) → (‘(0g𝑍)) = (0g𝑟))
4746ad2antrr 725 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) ∧ 𝑎 ∈ (Base‘𝑍)) → (‘(0g𝑍)) = (0g𝑟))
4812, 440ringbas 44495 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ (Ring ∖ NzRing) → (Base‘𝑍) = {(0g𝑍)})
4910, 48syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝑍) = {(0g𝑍)})
5049eleq2d 2875 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎 ∈ (Base‘𝑍) ↔ 𝑎 ∈ {(0g𝑍)}))
51 elsni 4542 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ {(0g𝑍)} → 𝑎 = (0g𝑍))
5251fveq2d 6649 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {(0g𝑍)} → (𝑎) = (‘(0g𝑍)))
5350, 52syl6bi 256 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎 ∈ (Base‘𝑍) → (𝑎) = (‘(0g𝑍))))
5453adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑎 ∈ (Base‘𝑍) → (𝑎) = (‘(0g𝑍))))
5554ad2antrr 725 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) → (𝑎 ∈ (Base‘𝑍) → (𝑎) = (‘(0g𝑍))))
5655imp 410 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑎) = (‘(0g𝑍)))
57 eqidd 2799 . . . . . . . . . . . . . 14 (𝑎 ∈ (Base‘𝑍) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))
58 eqidd 2799 . . . . . . . . . . . . . 14 ((𝑎 ∈ (Base‘𝑍) ∧ 𝑥 = 𝑎) → (0g𝑟) = (0g𝑟))
59 id 22 . . . . . . . . . . . . . 14 (𝑎 ∈ (Base‘𝑍) → 𝑎 ∈ (Base‘𝑍))
6039a1i 11 . . . . . . . . . . . . . 14 (𝑎 ∈ (Base‘𝑍) → (0g𝑟) ∈ V)
6157, 58, 59, 60fvmptd 6752 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑍) → ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))‘𝑎) = (0g𝑟))
6261adantl 485 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) ∧ 𝑎 ∈ (Base‘𝑍)) → ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))‘𝑎) = (0g𝑟))
6347, 56, 623eqtr4d 2843 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑎) = ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))‘𝑎))
6438, 41, 63eqfnfvd 6782 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))
6536, 64mpdan 686 . . . . . . . . 9 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))
6665ex 416 . . . . . . . 8 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))))
6766adantr 484 . . . . . . 7 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟)) → ( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))))
6867alrimiv 1928 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟)) → ∀( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))))
6917, 31, 683jca 1125 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟)) → ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟) ∧ ∀( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))))
7016, 69mpdan 686 . . . 4 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟) ∧ ∀( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))))
71 eleq1 2877 . . . . 5 ( = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) → ( ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟)))
7271eqeu 3645 . . . 4 (((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHomo 𝑟) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟) ∧ ∀( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))) → ∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
7370, 72syl 17 . . 3 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
7473ralrimiva 3149 . 2 (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
751rngccat 44602 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
763, 75syl 17 . . 3 (𝜑𝐶 ∈ Cat)
772, 19, 76, 25isinito 17252 . 2 (𝜑 → (𝑍 ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
7874, 77mpbird 260 1 (𝜑𝑍 ∈ (InitO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2111  ∃!weu 2628  wral 3106  Vcvv 3441  cdif 3878  cin 3880  {csn 4525  cmpt 5110   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  Hom chom 16568  0gc0g 16705  Catccat 16927  InitOcinito 17240   GrpHom cghm 18347  Ringcrg 19290  NzRingcnzr 20023  Rngcrng 44498   RngHomo crngh 44509  RngCatcrngc 44581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-hom 16581  df-cco 16582  df-0g 16707  df-cat 16931  df-cid 16932  df-homf 16933  df-ssc 17072  df-resc 17073  df-subc 17074  df-inito 17243  df-estrc 17365  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-nzr 20024  df-mgmhm 44399  df-rng0 44499  df-rnghomo 44511  df-rngc 44583
This theorem is referenced by:  zrzeroorngc  44626
  Copyright terms: Public domain W3C validator