MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrinitorngc Structured version   Visualization version   GIF version

Theorem zrinitorngc 20538
Description: The zero ring is an initial object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
zrinitorngc.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
zrinitorngc.c 𝐢 = (RngCatβ€˜π‘ˆ)
zrinitorngc.z (πœ‘ β†’ 𝑍 ∈ (Ring βˆ– NzRing))
zrinitorngc.e (πœ‘ β†’ 𝑍 ∈ π‘ˆ)
Assertion
Ref Expression
zrinitorngc (πœ‘ β†’ 𝑍 ∈ (InitOβ€˜πΆ))

Proof of Theorem zrinitorngc
Dummy variables π‘Ž β„Ž π‘Ÿ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zrinitorngc.c . . . . . . . . . 10 𝐢 = (RngCatβ€˜π‘ˆ)
2 eqid 2726 . . . . . . . . . 10 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
3 zrinitorngc.u . . . . . . . . . 10 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
41, 2, 3rngcbas 20517 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜πΆ) = (π‘ˆ ∩ Rng))
54eleq2d 2813 . . . . . . . 8 (πœ‘ β†’ (π‘Ÿ ∈ (Baseβ€˜πΆ) ↔ π‘Ÿ ∈ (π‘ˆ ∩ Rng)))
6 elin 3959 . . . . . . . . 9 (π‘Ÿ ∈ (π‘ˆ ∩ Rng) ↔ (π‘Ÿ ∈ π‘ˆ ∧ π‘Ÿ ∈ Rng))
76simprbi 496 . . . . . . . 8 (π‘Ÿ ∈ (π‘ˆ ∩ Rng) β†’ π‘Ÿ ∈ Rng)
85, 7biimtrdi 252 . . . . . . 7 (πœ‘ β†’ (π‘Ÿ ∈ (Baseβ€˜πΆ) β†’ π‘Ÿ ∈ Rng))
98imp 406 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘Ÿ ∈ Rng)
10 zrinitorngc.z . . . . . . 7 (πœ‘ β†’ 𝑍 ∈ (Ring βˆ– NzRing))
1110adantr 480 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ 𝑍 ∈ (Ring βˆ– NzRing))
12 eqid 2726 . . . . . . 7 (Baseβ€˜π‘) = (Baseβ€˜π‘)
13 eqid 2726 . . . . . . 7 (0gβ€˜π‘Ÿ) = (0gβ€˜π‘Ÿ)
14 eqid 2726 . . . . . . 7 (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))
1512, 13, 14zrrnghm 20436 . . . . . 6 ((π‘Ÿ ∈ Rng ∧ 𝑍 ∈ (Ring βˆ– NzRing)) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ))
169, 11, 15syl2anc 583 . . . . 5 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ))
17 simpr 484 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ))
183adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘ˆ ∈ 𝑉)
19 eqid 2726 . . . . . . . . . 10 (Hom β€˜πΆ) = (Hom β€˜πΆ)
20 zrinitorngc.e . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ π‘ˆ)
21 eldifi 4121 . . . . . . . . . . . . . 14 (𝑍 ∈ (Ring βˆ– NzRing) β†’ 𝑍 ∈ Ring)
22 ringrng 20184 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring β†’ 𝑍 ∈ Rng)
2310, 21, 223syl 18 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ Rng)
2420, 23elind 4189 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑍 ∈ (π‘ˆ ∩ Rng))
2524, 4eleqtrrd 2830 . . . . . . . . . . 11 (πœ‘ β†’ 𝑍 ∈ (Baseβ€˜πΆ))
2625adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ 𝑍 ∈ (Baseβ€˜πΆ))
27 simpr 484 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘Ÿ ∈ (Baseβ€˜πΆ))
281, 2, 18, 19, 26, 27rngchom 20519 . . . . . . . . 9 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (𝑍(Hom β€˜πΆ)π‘Ÿ) = (𝑍 RngHom π‘Ÿ))
2928eqcomd 2732 . . . . . . . 8 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (𝑍 RngHom π‘Ÿ) = (𝑍(Hom β€˜πΆ)π‘Ÿ))
3029eleq2d 2813 . . . . . . 7 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ) ↔ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)))
3130biimpa 476 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ))
3228eleq2d 2813 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) ↔ β„Ž ∈ (𝑍 RngHom π‘Ÿ)))
33 eqid 2726 . . . . . . . . . . . . 13 (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘Ÿ)
3412, 33rnghmf 20350 . . . . . . . . . . . 12 (β„Ž ∈ (𝑍 RngHom π‘Ÿ) β†’ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ))
3532, 34biimtrdi 252 . . . . . . . . . . 11 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)))
3635imp 406 . . . . . . . . . 10 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) β†’ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ))
37 ffn 6711 . . . . . . . . . . . 12 (β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ) β†’ β„Ž Fn (Baseβ€˜π‘))
3837adantl 481 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) β†’ β„Ž Fn (Baseβ€˜π‘))
39 fvex 6898 . . . . . . . . . . . . 13 (0gβ€˜π‘Ÿ) ∈ V
4039, 14fnmpti 6687 . . . . . . . . . . . 12 (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) Fn (Baseβ€˜π‘)
4140a1i 11 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) Fn (Baseβ€˜π‘))
4232biimpa 476 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) β†’ β„Ž ∈ (𝑍 RngHom π‘Ÿ))
43 rnghmghm 20349 . . . . . . . . . . . . . 14 (β„Ž ∈ (𝑍 RngHom π‘Ÿ) β†’ β„Ž ∈ (𝑍 GrpHom π‘Ÿ))
44 eqid 2726 . . . . . . . . . . . . . . 15 (0gβ€˜π‘) = (0gβ€˜π‘)
4544, 13ghmid 19147 . . . . . . . . . . . . . 14 (β„Ž ∈ (𝑍 GrpHom π‘Ÿ) β†’ (β„Žβ€˜(0gβ€˜π‘)) = (0gβ€˜π‘Ÿ))
4642, 43, 453syl 18 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) β†’ (β„Žβ€˜(0gβ€˜π‘)) = (0gβ€˜π‘Ÿ))
4746ad2antrr 723 . . . . . . . . . . . 12 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) ∧ π‘Ž ∈ (Baseβ€˜π‘)) β†’ (β„Žβ€˜(0gβ€˜π‘)) = (0gβ€˜π‘Ÿ))
4812, 440ringbas 20428 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ (Ring βˆ– NzRing) β†’ (Baseβ€˜π‘) = {(0gβ€˜π‘)})
4910, 48syl 17 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (Baseβ€˜π‘) = {(0gβ€˜π‘)})
5049eleq2d 2813 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (π‘Ž ∈ (Baseβ€˜π‘) ↔ π‘Ž ∈ {(0gβ€˜π‘)}))
51 elsni 4640 . . . . . . . . . . . . . . . . 17 (π‘Ž ∈ {(0gβ€˜π‘)} β†’ π‘Ž = (0gβ€˜π‘))
5251fveq2d 6889 . . . . . . . . . . . . . . . 16 (π‘Ž ∈ {(0gβ€˜π‘)} β†’ (β„Žβ€˜π‘Ž) = (β„Žβ€˜(0gβ€˜π‘)))
5350, 52biimtrdi 252 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (π‘Ž ∈ (Baseβ€˜π‘) β†’ (β„Žβ€˜π‘Ž) = (β„Žβ€˜(0gβ€˜π‘))))
5453adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (π‘Ž ∈ (Baseβ€˜π‘) β†’ (β„Žβ€˜π‘Ž) = (β„Žβ€˜(0gβ€˜π‘))))
5554ad2antrr 723 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) β†’ (π‘Ž ∈ (Baseβ€˜π‘) β†’ (β„Žβ€˜π‘Ž) = (β„Žβ€˜(0gβ€˜π‘))))
5655imp 406 . . . . . . . . . . . 12 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) ∧ π‘Ž ∈ (Baseβ€˜π‘)) β†’ (β„Žβ€˜π‘Ž) = (β„Žβ€˜(0gβ€˜π‘)))
57 eqidd 2727 . . . . . . . . . . . . . 14 (π‘Ž ∈ (Baseβ€˜π‘) β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))
58 eqidd 2727 . . . . . . . . . . . . . 14 ((π‘Ž ∈ (Baseβ€˜π‘) ∧ π‘₯ = π‘Ž) β†’ (0gβ€˜π‘Ÿ) = (0gβ€˜π‘Ÿ))
59 id 22 . . . . . . . . . . . . . 14 (π‘Ž ∈ (Baseβ€˜π‘) β†’ π‘Ž ∈ (Baseβ€˜π‘))
6039a1i 11 . . . . . . . . . . . . . 14 (π‘Ž ∈ (Baseβ€˜π‘) β†’ (0gβ€˜π‘Ÿ) ∈ V)
6157, 58, 59, 60fvmptd 6999 . . . . . . . . . . . . 13 (π‘Ž ∈ (Baseβ€˜π‘) β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))β€˜π‘Ž) = (0gβ€˜π‘Ÿ))
6261adantl 481 . . . . . . . . . . . 12 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) ∧ π‘Ž ∈ (Baseβ€˜π‘)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))β€˜π‘Ž) = (0gβ€˜π‘Ÿ))
6347, 56, 623eqtr4d 2776 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) ∧ π‘Ž ∈ (Baseβ€˜π‘)) β†’ (β„Žβ€˜π‘Ž) = ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))β€˜π‘Ž))
6438, 41, 63eqfnfvd 7029 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) ∧ β„Ž:(Baseβ€˜π‘)⟢(Baseβ€˜π‘Ÿ)) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))
6536, 64mpdan 684 . . . . . . . . 9 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))
6665ex 412 . . . . . . . 8 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))))
6766adantr 480 . . . . . . 7 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ)) β†’ (β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))))
6867alrimiv 1922 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ)) β†’ βˆ€β„Ž(β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ))))
6917, 31, 683jca 1125 . . . . 5 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) ∧ βˆ€β„Ž(β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))))
7016, 69mpdan 684 . . . 4 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) ∧ βˆ€β„Ž(β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))))
71 eleq1 2815 . . . . 5 (β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) β†’ (β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) ↔ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)))
7271eqeu 3697 . . . 4 (((π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍 RngHom π‘Ÿ) ∧ (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)) ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) ∧ βˆ€β„Ž(β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘) ↦ (0gβ€˜π‘Ÿ)))) β†’ βˆƒ!β„Ž β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ))
7370, 72syl 17 . . 3 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ βˆƒ!β„Ž β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ))
7473ralrimiva 3140 . 2 (πœ‘ β†’ βˆ€π‘Ÿ ∈ (Baseβ€˜πΆ)βˆƒ!β„Ž β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ))
751rngccat 20530 . . . 4 (π‘ˆ ∈ 𝑉 β†’ 𝐢 ∈ Cat)
763, 75syl 17 . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
772, 19, 76, 25isinito 17958 . 2 (πœ‘ β†’ (𝑍 ∈ (InitOβ€˜πΆ) ↔ βˆ€π‘Ÿ ∈ (Baseβ€˜πΆ)βˆƒ!β„Ž β„Ž ∈ (𝑍(Hom β€˜πΆ)π‘Ÿ)))
7874, 77mpbird 257 1 (πœ‘ β†’ 𝑍 ∈ (InitOβ€˜πΆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084  βˆ€wal 1531   = wceq 1533   ∈ wcel 2098  βˆƒ!weu 2556  βˆ€wral 3055  Vcvv 3468   βˆ– cdif 3940   ∩ cin 3942  {csn 4623   ↦ cmpt 5224   Fn wfn 6532  βŸΆwf 6533  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  Hom chom 17217  0gc0g 17394  Catccat 17617  InitOcinito 17943   GrpHom cghm 19138  Rngcrng 20057  Ringcrg 20138   RngHom crnghm 20336  NzRingcnzr 20414  RngCatcrngc 20512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-hash 14296  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-hom 17230  df-cco 17231  df-0g 17396  df-cat 17621  df-cid 17622  df-homf 17623  df-ssc 17766  df-resc 17767  df-subc 17768  df-inito 17946  df-estrc 18086  df-mgm 18573  df-mgmhm 18625  df-sgrp 18652  df-mnd 18668  df-mhm 18713  df-grp 18866  df-minusg 18867  df-ghm 19139  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058  df-ur 20087  df-ring 20140  df-rnghm 20338  df-nzr 20415  df-rngc 20513
This theorem is referenced by:  zrzeroorngc  20540
  Copyright terms: Public domain W3C validator