MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrinitorngc Structured version   Visualization version   GIF version

Theorem zrinitorngc 20602
Description: The zero ring is an initial object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
zrinitorngc.u (𝜑𝑈𝑉)
zrinitorngc.c 𝐶 = (RngCat‘𝑈)
zrinitorngc.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
zrinitorngc.e (𝜑𝑍𝑈)
Assertion
Ref Expression
zrinitorngc (𝜑𝑍 ∈ (InitO‘𝐶))

Proof of Theorem zrinitorngc
Dummy variables 𝑎 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zrinitorngc.c . . . . . . . . . 10 𝐶 = (RngCat‘𝑈)
2 eqid 2735 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
3 zrinitorngc.u . . . . . . . . . 10 (𝜑𝑈𝑉)
41, 2, 3rngcbas 20581 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
54eleq2d 2820 . . . . . . . 8 (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Rng)))
6 elin 3942 . . . . . . . . 9 (𝑟 ∈ (𝑈 ∩ Rng) ↔ (𝑟𝑈𝑟 ∈ Rng))
76simprbi 496 . . . . . . . 8 (𝑟 ∈ (𝑈 ∩ Rng) → 𝑟 ∈ Rng)
85, 7biimtrdi 253 . . . . . . 7 (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Rng))
98imp 406 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Rng)
10 zrinitorngc.z . . . . . . 7 (𝜑𝑍 ∈ (Ring ∖ NzRing))
1110adantr 480 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing))
12 eqid 2735 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
13 eqid 2735 . . . . . . 7 (0g𝑟) = (0g𝑟)
14 eqid 2735 . . . . . . 7 (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))
1512, 13, 14zrrnghm 20496 . . . . . 6 ((𝑟 ∈ Rng ∧ 𝑍 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟))
169, 11, 15syl2anc 584 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟))
17 simpr 484 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟)) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟))
183adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑈𝑉)
19 eqid 2735 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
20 zrinitorngc.e . . . . . . . . . . . . 13 (𝜑𝑍𝑈)
21 eldifi 4106 . . . . . . . . . . . . . 14 (𝑍 ∈ (Ring ∖ NzRing) → 𝑍 ∈ Ring)
22 ringrng 20245 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring → 𝑍 ∈ Rng)
2310, 21, 223syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ Rng)
2420, 23elind 4175 . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑈 ∩ Rng))
2524, 4eleqtrrd 2837 . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Base‘𝐶))
27 simpr 484 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶))
281, 2, 18, 19, 26, 27rngchom 20583 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑍(Hom ‘𝐶)𝑟) = (𝑍 RngHom 𝑟))
2928eqcomd 2741 . . . . . . . 8 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑍 RngHom 𝑟) = (𝑍(Hom ‘𝐶)𝑟))
3029eleq2d 2820 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟) ↔ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟)))
3130biimpa 476 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟)) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟))
3228eleq2d 2820 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ∈ (𝑍 RngHom 𝑟)))
33 eqid 2735 . . . . . . . . . . . . 13 (Base‘𝑟) = (Base‘𝑟)
3412, 33rnghmf 20408 . . . . . . . . . . . 12 ( ∈ (𝑍 RngHom 𝑟) → :(Base‘𝑍)⟶(Base‘𝑟))
3532, 34biimtrdi 253 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑍(Hom ‘𝐶)𝑟) → :(Base‘𝑍)⟶(Base‘𝑟)))
3635imp 406 . . . . . . . . . 10 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) → :(Base‘𝑍)⟶(Base‘𝑟))
37 ffn 6706 . . . . . . . . . . . 12 (:(Base‘𝑍)⟶(Base‘𝑟) → Fn (Base‘𝑍))
3837adantl 481 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) → Fn (Base‘𝑍))
39 fvex 6889 . . . . . . . . . . . . 13 (0g𝑟) ∈ V
4039, 14fnmpti 6681 . . . . . . . . . . . 12 (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) Fn (Base‘𝑍)
4140a1i 11 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) Fn (Base‘𝑍))
4232biimpa 476 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) → ∈ (𝑍 RngHom 𝑟))
43 rnghmghm 20407 . . . . . . . . . . . . . 14 ( ∈ (𝑍 RngHom 𝑟) → ∈ (𝑍 GrpHom 𝑟))
44 eqid 2735 . . . . . . . . . . . . . . 15 (0g𝑍) = (0g𝑍)
4544, 13ghmid 19205 . . . . . . . . . . . . . 14 ( ∈ (𝑍 GrpHom 𝑟) → (‘(0g𝑍)) = (0g𝑟))
4642, 43, 453syl 18 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) → (‘(0g𝑍)) = (0g𝑟))
4746ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) ∧ 𝑎 ∈ (Base‘𝑍)) → (‘(0g𝑍)) = (0g𝑟))
4812, 440ringbas 20488 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ (Ring ∖ NzRing) → (Base‘𝑍) = {(0g𝑍)})
4910, 48syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝑍) = {(0g𝑍)})
5049eleq2d 2820 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎 ∈ (Base‘𝑍) ↔ 𝑎 ∈ {(0g𝑍)}))
51 elsni 4618 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ {(0g𝑍)} → 𝑎 = (0g𝑍))
5251fveq2d 6880 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {(0g𝑍)} → (𝑎) = (‘(0g𝑍)))
5350, 52biimtrdi 253 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎 ∈ (Base‘𝑍) → (𝑎) = (‘(0g𝑍))))
5453adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑎 ∈ (Base‘𝑍) → (𝑎) = (‘(0g𝑍))))
5554ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) → (𝑎 ∈ (Base‘𝑍) → (𝑎) = (‘(0g𝑍))))
5655imp 406 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑎) = (‘(0g𝑍)))
57 eqidd 2736 . . . . . . . . . . . . . 14 (𝑎 ∈ (Base‘𝑍) → (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))
58 eqidd 2736 . . . . . . . . . . . . . 14 ((𝑎 ∈ (Base‘𝑍) ∧ 𝑥 = 𝑎) → (0g𝑟) = (0g𝑟))
59 id 22 . . . . . . . . . . . . . 14 (𝑎 ∈ (Base‘𝑍) → 𝑎 ∈ (Base‘𝑍))
6039a1i 11 . . . . . . . . . . . . . 14 (𝑎 ∈ (Base‘𝑍) → (0g𝑟) ∈ V)
6157, 58, 59, 60fvmptd 6993 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑍) → ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))‘𝑎) = (0g𝑟))
6261adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) ∧ 𝑎 ∈ (Base‘𝑍)) → ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))‘𝑎) = (0g𝑟))
6347, 56, 623eqtr4d 2780 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑎) = ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))‘𝑎))
6438, 41, 63eqfnfvd 7024 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) ∧ :(Base‘𝑍)⟶(Base‘𝑟)) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))
6536, 64mpdan 687 . . . . . . . . 9 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ ∈ (𝑍(Hom ‘𝐶)𝑟)) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))
6665ex 412 . . . . . . . 8 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))))
6766adantr 480 . . . . . . 7 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟)) → ( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))))
6867alrimiv 1927 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟)) → ∀( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟))))
6917, 31, 683jca 1128 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟)) → ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟) ∧ ∀( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))))
7016, 69mpdan 687 . . . 4 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟) ∧ ∀( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))))
71 eleq1 2822 . . . . 5 ( = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) → ( ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟)))
7271eqeu 3689 . . . 4 (((𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍 RngHom 𝑟) ∧ (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)) ∈ (𝑍(Hom ‘𝐶)𝑟) ∧ ∀( ∈ (𝑍(Hom ‘𝐶)𝑟) → = (𝑥 ∈ (Base‘𝑍) ↦ (0g𝑟)))) → ∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
7370, 72syl 17 . . 3 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
7473ralrimiva 3132 . 2 (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
751rngccat 20594 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
763, 75syl 17 . . 3 (𝜑𝐶 ∈ Cat)
772, 19, 76, 25isinito 18009 . 2 (𝜑 → (𝑍 ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
7874, 77mpbird 257 1 (𝜑𝑍 ∈ (InitO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2108  ∃!weu 2567  wral 3051  Vcvv 3459  cdif 3923  cin 3925  {csn 4601  cmpt 5201   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  0gc0g 17453  Catccat 17676  InitOcinito 17994   GrpHom cghm 19195  Rngcrng 20112  Ringcrg 20193   RngHom crnghm 20394  NzRingcnzr 20472  RngCatcrngc 20576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-hom 17295  df-cco 17296  df-0g 17455  df-cat 17680  df-cid 17681  df-homf 17682  df-ssc 17823  df-resc 17824  df-subc 17825  df-inito 17997  df-estrc 18135  df-mgm 18618  df-mgmhm 18670  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-rnghm 20396  df-nzr 20473  df-rngc 20577
This theorem is referenced by:  zrzeroorngc  20604
  Copyright terms: Public domain W3C validator