Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop3 Structured version   Visualization version   GIF version

Theorem neibastop3 35711
Description: The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
Assertion
Ref Expression
neibastop3 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
Distinct variable groups:   𝑡,𝑛,𝑣,𝑦,𝑗,𝑥   𝑗,𝐽   𝑥,𝑛,𝐽,𝑣,𝑦   𝑡,𝑜,𝑣,𝑤,𝑥,𝑦,𝑗,𝐹,𝑛   𝜑,𝑗,𝑛,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦   𝑗,𝑋,𝑛,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑤,𝑡,𝑜)   𝑉(𝑥,𝑦,𝑤,𝑣,𝑡,𝑗,𝑛,𝑜)

Proof of Theorem neibastop3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . 4 (𝜑𝑋𝑉)
2 neibastop1.2 . . . 4 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
3 neibastop1.3 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
4 neibastop1.4 . . . 4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
51, 2, 3, 4neibastop1 35708 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 neibastop1.5 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
7 neibastop1.6 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
81, 2, 3, 4, 6, 7neibastop2 35710 . . . . . . . 8 ((𝜑𝑧𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑧}) ↔ (𝑛𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)))
9 velpw 4607 . . . . . . . . 9 (𝑛 ∈ 𝒫 𝑋𝑛𝑋)
109anbi1i 623 . . . . . . . 8 ((𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅) ↔ (𝑛𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅))
118, 10bitr4di 289 . . . . . . 7 ((𝜑𝑧𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑧}) ↔ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)))
1211eqabdv 2866 . . . . . 6 ((𝜑𝑧𝑋) → ((nei‘𝐽)‘{𝑧}) = {𝑛 ∣ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)})
13 df-rab 3432 . . . . . 6 {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅} = {𝑛 ∣ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅)}
1412, 13eqtr4di 2789 . . . . 5 ((𝜑𝑧𝑋) → ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
1514ralrimiva 3145 . . . 4 (𝜑 → ∀𝑧𝑋 ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
16 sneq 4638 . . . . . . 7 (𝑥 = 𝑧 → {𝑥} = {𝑧})
1716fveq2d 6895 . . . . . 6 (𝑥 = 𝑧 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑧}))
18 fveq2 6891 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1918ineq1d 4211 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹𝑥) ∩ 𝒫 𝑛) = ((𝐹𝑧) ∩ 𝒫 𝑛))
2019neeq1d 2999 . . . . . . 7 (𝑥 = 𝑧 → (((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅ ↔ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅))
2120rabbidv 3439 . . . . . 6 (𝑥 = 𝑧 → {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
2217, 21eqeq12d 2747 . . . . 5 (𝑥 = 𝑧 → (((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅}))
2322cbvralvw 3233 . . . 4 (∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∀𝑧𝑋 ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑧) ∩ 𝒫 𝑛) ≠ ∅})
2415, 23sylibr 233 . . 3 (𝜑 → ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
25 toponuni 22736 . . . . . . . . . 10 (𝑗 ∈ (TopOn‘𝑋) → 𝑋 = 𝑗)
26 eqimss2 4041 . . . . . . . . . 10 (𝑋 = 𝑗 𝑗𝑋)
2725, 26syl 17 . . . . . . . . 9 (𝑗 ∈ (TopOn‘𝑋) → 𝑗𝑋)
28 sspwuni 5103 . . . . . . . . 9 (𝑗 ⊆ 𝒫 𝑋 𝑗𝑋)
2927, 28sylibr 233 . . . . . . . 8 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ⊆ 𝒫 𝑋)
3029ad2antlr 724 . . . . . . 7 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 ⊆ 𝒫 𝑋)
31 sseqin2 4215 . . . . . . 7 (𝑗 ⊆ 𝒫 𝑋 ↔ (𝒫 𝑋𝑗) = 𝑗)
3230, 31sylib 217 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋𝑗) = 𝑗)
33 topontop 22735 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top)
3433ad3antlr 728 . . . . . . . . . 10 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → 𝑗 ∈ Top)
35 eltop2 22798 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑜𝑗 ↔ ∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜)))
3634, 35syl 17 . . . . . . . . 9 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (𝑜𝑗 ↔ ∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜)))
37 elpwi 4609 . . . . . . . . . . . . . . 15 (𝑜 ∈ 𝒫 𝑋𝑜𝑋)
38 ssralv 4050 . . . . . . . . . . . . . . 15 (𝑜𝑋 → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
3937, 38syl 17 . . . . . . . . . . . . . 14 (𝑜 ∈ 𝒫 𝑋 → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
4039adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
41 simprr 770 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
4241eleq2d 2818 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ 𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
4333ad3antlr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑗 ∈ Top)
4425adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → 𝑋 = 𝑗)
4544sseq2d 4014 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → (𝑜𝑋𝑜 𝑗))
4645biimpa 476 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜𝑋) → 𝑜 𝑗)
4737, 46sylan2 592 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → 𝑜 𝑗)
4847sselda 3982 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ 𝑥𝑜) → 𝑥 𝑗)
4948adantrr 714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑥 𝑗)
5047adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑜 𝑗)
51 eqid 2731 . . . . . . . . . . . . . . . . . . 19 𝑗 = 𝑗
5251isneip 22929 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ Top ∧ 𝑥 𝑗) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ (𝑜 𝑗 ∧ ∃𝑧𝑗 (𝑥𝑧𝑧𝑜))))
5352baibd 539 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ Top ∧ 𝑥 𝑗) ∧ 𝑜 𝑗) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ ∃𝑧𝑗 (𝑥𝑧𝑧𝑜)))
5443, 49, 50, 53syl21anc 835 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ ∃𝑧𝑗 (𝑥𝑧𝑧𝑜)))
55 pweq 4616 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑜 → 𝒫 𝑛 = 𝒫 𝑜)
5655ineq2d 4212 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑜 → ((𝐹𝑥) ∩ 𝒫 𝑛) = ((𝐹𝑥) ∩ 𝒫 𝑜))
5756neeq1d 2999 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑜 → (((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
5857elrab3 3684 . . . . . . . . . . . . . . . . 17 (𝑜 ∈ 𝒫 𝑋 → (𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
5958ad2antlr 724 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6042, 54, 593bitr3d 309 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6160expr 456 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ 𝑥𝑜) → (((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅)))
6261ralimdva 3166 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅)))
6340, 62syld 47 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅)))
6463imp 406 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6564an32s 649 . . . . . . . . . 10 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → ∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
66 ralbi 3102 . . . . . . . . . 10 (∀𝑥𝑜 (∃𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅) → (∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6765, 66syl 17 . . . . . . . . 9 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥𝑜𝑧𝑗 (𝑥𝑧𝑧𝑜) ↔ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6836, 67bitrd 279 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (𝑜𝑗 ↔ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅))
6968rabbi2dva 4217 . . . . . . 7 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋𝑗) = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅})
7069, 4eqtr4di 2789 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋𝑗) = 𝐽)
7132, 70eqtr3d 2773 . . . . 5 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)
7271expl 457 . . . 4 (𝜑 → ((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽))
7372alrimiv 1929 . . 3 (𝜑 → ∀𝑗((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽))
74 eleq1 2820 . . . . 5 (𝑗 = 𝐽 → (𝑗 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ (TopOn‘𝑋)))
75 fveq2 6891 . . . . . . . 8 (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽))
7675fveq1d 6893 . . . . . . 7 (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥}))
7776eqeq1d 2733 . . . . . 6 (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
7877ralbidv 3176 . . . . 5 (𝑗 = 𝐽 → (∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
7974, 78anbi12d 630 . . . 4 (𝑗 = 𝐽 → ((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ↔ (𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})))
8079eqeu 3702 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ ∀𝑗((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)) → ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
815, 5, 24, 73, 80syl121anc 1374 . 2 (𝜑 → ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
82 df-reu 3376 . 2 (∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅}))
8381, 82sylibr 233 1 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2105  ∃!weu 2561  {cab 2708  wne 2939  wral 3060  wrex 3069  ∃!wreu 3373  {crab 3431  cdif 3945  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628   cuni 4908  wf 6539  cfv 6543  Topctop 22715  TopOnctopon 22732  neicnei 22921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-topgen 17396  df-top 22716  df-topon 22733  df-nei 22922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator