| Step | Hyp | Ref
| Expression |
| 1 | | neibastop1.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 2 | | neibastop1.2 |
. . . 4
⊢ (𝜑 → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖
{∅})) |
| 3 | | neibastop1.3 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥))) → ((𝐹‘𝑥) ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
| 4 | | neibastop1.4 |
. . . 4
⊢ 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅} |
| 5 | 1, 2, 3, 4 | neibastop1 36360 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | | neibastop1.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → 𝑥 ∈ 𝑣) |
| 7 | | neibastop1.6 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → ∃𝑡 ∈ (𝐹‘𝑥)∀𝑦 ∈ 𝑡 ((𝐹‘𝑦) ∩ 𝒫 𝑣) ≠ ∅) |
| 8 | 1, 2, 3, 4, 6, 7 | neibastop2 36362 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑧}) ↔ (𝑛 ⊆ 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅))) |
| 9 | | velpw 4605 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝒫 𝑋 ↔ 𝑛 ⊆ 𝑋) |
| 10 | 9 | anbi1i 624 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅) ↔ (𝑛 ⊆ 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅)) |
| 11 | 8, 10 | bitr4di 289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑧}) ↔ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅))) |
| 12 | 11 | eqabdv 2875 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((nei‘𝐽)‘{𝑧}) = {𝑛 ∣ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅)}) |
| 13 | | df-rab 3437 |
. . . . . 6
⊢ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅} = {𝑛 ∣ (𝑛 ∈ 𝒫 𝑋 ∧ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅)} |
| 14 | 12, 13 | eqtr4di 2795 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅}) |
| 15 | 14 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅}) |
| 16 | | sneq 4636 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) |
| 17 | 16 | fveq2d 6910 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑧})) |
| 18 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 19 | 18 | ineq1d 4219 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ∩ 𝒫 𝑛) = ((𝐹‘𝑧) ∩ 𝒫 𝑛)) |
| 20 | 19 | neeq1d 3000 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅ ↔ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅)) |
| 21 | 20 | rabbidv 3444 |
. . . . . 6
⊢ (𝑥 = 𝑧 → {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅}) |
| 22 | 17, 21 | eqeq12d 2753 |
. . . . 5
⊢ (𝑥 = 𝑧 → (((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅})) |
| 23 | 22 | cbvralvw 3237 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∀𝑧 ∈ 𝑋 ((nei‘𝐽)‘{𝑧}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑧) ∩ 𝒫 𝑛) ≠ ∅}) |
| 24 | 15, 23 | sylibr 234 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) |
| 25 | | toponuni 22920 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑗) |
| 26 | | eqimss2 4043 |
. . . . . . . . . 10
⊢ (𝑋 = ∪
𝑗 → ∪ 𝑗
⊆ 𝑋) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝑗 ∈ (TopOn‘𝑋) → ∪ 𝑗
⊆ 𝑋) |
| 28 | | sspwuni 5100 |
. . . . . . . . 9
⊢ (𝑗 ⊆ 𝒫 𝑋 ↔ ∪ 𝑗
⊆ 𝑋) |
| 29 | 27, 28 | sylibr 234 |
. . . . . . . 8
⊢ (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ⊆ 𝒫 𝑋) |
| 30 | 29 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 ⊆ 𝒫 𝑋) |
| 31 | | sseqin2 4223 |
. . . . . . 7
⊢ (𝑗 ⊆ 𝒫 𝑋 ↔ (𝒫 𝑋 ∩ 𝑗) = 𝑗) |
| 32 | 30, 31 | sylib 218 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋 ∩ 𝑗) = 𝑗) |
| 33 | | topontop 22919 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top) |
| 34 | 33 | ad3antlr 731 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → 𝑗 ∈ Top) |
| 35 | | eltop2 22982 |
. . . . . . . . . 10
⊢ (𝑗 ∈ Top → (𝑜 ∈ 𝑗 ↔ ∀𝑥 ∈ 𝑜 ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜))) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (𝑜 ∈ 𝑗 ↔ ∀𝑥 ∈ 𝑜 ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜))) |
| 37 | | elpwi 4607 |
. . . . . . . . . . . . . . 15
⊢ (𝑜 ∈ 𝒫 𝑋 → 𝑜 ⊆ 𝑋) |
| 38 | | ssralv 4052 |
. . . . . . . . . . . . . . 15
⊢ (𝑜 ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥 ∈ 𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑜 ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥 ∈ 𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
| 40 | 39 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥 ∈ 𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
| 41 | | simprr 773 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) |
| 42 | 41 | eleq2d 2827 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ 𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
| 43 | 33 | ad3antlr 731 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑗 ∈ Top) |
| 44 | 25 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) → 𝑋 = ∪ 𝑗) |
| 45 | 44 | sseq2d 4016 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) → (𝑜 ⊆ 𝑋 ↔ 𝑜 ⊆ ∪ 𝑗)) |
| 46 | 45 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ⊆ 𝑋) → 𝑜 ⊆ ∪ 𝑗) |
| 47 | 37, 46 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → 𝑜 ⊆ ∪ 𝑗) |
| 48 | 47 | sselda 3983 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑜) → 𝑥 ∈ ∪ 𝑗) |
| 49 | 48 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑥 ∈ ∪ 𝑗) |
| 50 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → 𝑜 ⊆ ∪ 𝑗) |
| 51 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑗 =
∪ 𝑗 |
| 52 | 51 | isneip 23113 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ Top ∧ 𝑥 ∈ ∪ 𝑗)
→ (𝑜 ∈
((nei‘𝑗)‘{𝑥}) ↔ (𝑜 ⊆ ∪ 𝑗 ∧ ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜)))) |
| 53 | 52 | baibd 539 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑗 ∈ Top ∧ 𝑥 ∈ ∪ 𝑗)
∧ 𝑜 ⊆ ∪ 𝑗)
→ (𝑜 ∈
((nei‘𝑗)‘{𝑥}) ↔ ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜))) |
| 54 | 43, 49, 50, 53 | syl21anc 838 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ ((nei‘𝑗)‘{𝑥}) ↔ ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜))) |
| 55 | | pweq 4614 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑜 → 𝒫 𝑛 = 𝒫 𝑜) |
| 56 | 55 | ineq2d 4220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑜 → ((𝐹‘𝑥) ∩ 𝒫 𝑛) = ((𝐹‘𝑥) ∩ 𝒫 𝑜)) |
| 57 | 56 | neeq1d 3000 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑜 → (((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅ ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
| 58 | 57 | elrab3 3693 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑜 ∈ 𝒫 𝑋 → (𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
| 59 | 58 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (𝑜 ∈ {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
| 60 | 42, 54, 59 | 3bitr3d 309 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ (𝑥 ∈ 𝑜 ∧ ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) → (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
| 61 | 60 | expr 456 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑜) → (((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅))) |
| 62 | 61 | ralimdva 3167 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑜 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥 ∈ 𝑜 (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅))) |
| 63 | 40, 62 | syld 47 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} → ∀𝑥 ∈ 𝑜 (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅))) |
| 64 | 63 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑜 ∈ 𝒫 𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → ∀𝑥 ∈ 𝑜 (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
| 65 | 64 | an32s 652 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → ∀𝑥 ∈ 𝑜 (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
| 66 | | ralbi 3103 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑜 (∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅) → (∀𝑥 ∈ 𝑜 ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑜 ∃𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑜) ↔ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
| 68 | 36, 67 | bitrd 279 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ 𝑜 ∈ 𝒫 𝑋) → (𝑜 ∈ 𝑗 ↔ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅)) |
| 69 | 68 | rabbi2dva 4226 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋 ∩ 𝑗) = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅}) |
| 70 | 69, 4 | eqtr4di 2795 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → (𝒫 𝑋 ∩ 𝑗) = 𝐽) |
| 71 | 32, 70 | eqtr3d 2779 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽) |
| 72 | 71 | expl 457 |
. . . 4
⊢ (𝜑 → ((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)) |
| 73 | 72 | alrimiv 1927 |
. . 3
⊢ (𝜑 → ∀𝑗((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)) |
| 74 | | eleq1 2829 |
. . . . 5
⊢ (𝑗 = 𝐽 → (𝑗 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ (TopOn‘𝑋))) |
| 75 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽)) |
| 76 | 75 | fveq1d 6908 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥})) |
| 77 | 76 | eqeq1d 2739 |
. . . . . 6
⊢ (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
| 78 | 77 | ralbidv 3178 |
. . . . 5
⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∀𝑥 ∈ 𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
| 79 | 74, 78 | anbi12d 632 |
. . . 4
⊢ (𝑗 = 𝐽 → ((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ↔ (𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}))) |
| 80 | 79 | eqeu 3712 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝐽)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) ∧ ∀𝑗((𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) → 𝑗 = 𝐽)) → ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
| 81 | 5, 5, 24, 73, 80 | syl121anc 1377 |
. 2
⊢ (𝜑 → ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
| 82 | | df-reu 3381 |
. 2
⊢
(∃!𝑗 ∈
(TopOn‘𝑋)∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅} ↔ ∃!𝑗(𝑗 ∈ (TopOn‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅})) |
| 83 | 81, 82 | sylibr 234 |
1
⊢ (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥 ∈ 𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹‘𝑥) ∩ 𝒫 𝑛) ≠ ∅}) |