MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrtermorngc Structured version   Visualization version   GIF version

Theorem zrtermorngc 20578
Description: The zero ring is a terminal object in the category of non-unital rings. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrinitorngc.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
zrinitorngc.c 𝐢 = (RngCatβ€˜π‘ˆ)
zrinitorngc.z (πœ‘ β†’ 𝑍 ∈ (Ring βˆ– NzRing))
zrinitorngc.e (πœ‘ β†’ 𝑍 ∈ π‘ˆ)
Assertion
Ref Expression
zrtermorngc (πœ‘ β†’ 𝑍 ∈ (TermOβ€˜πΆ))

Proof of Theorem zrtermorngc
Dummy variables π‘Ž β„Ž π‘Ÿ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zrinitorngc.c . . . . . . . . . 10 𝐢 = (RngCatβ€˜π‘ˆ)
2 eqid 2725 . . . . . . . . . 10 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
3 zrinitorngc.u . . . . . . . . . 10 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
41, 2, 3rngcbas 20556 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜πΆ) = (π‘ˆ ∩ Rng))
54eleq2d 2811 . . . . . . . 8 (πœ‘ β†’ (π‘Ÿ ∈ (Baseβ€˜πΆ) ↔ π‘Ÿ ∈ (π‘ˆ ∩ Rng)))
6 elin 3955 . . . . . . . . 9 (π‘Ÿ ∈ (π‘ˆ ∩ Rng) ↔ (π‘Ÿ ∈ π‘ˆ ∧ π‘Ÿ ∈ Rng))
76simprbi 495 . . . . . . . 8 (π‘Ÿ ∈ (π‘ˆ ∩ Rng) β†’ π‘Ÿ ∈ Rng)
85, 7biimtrdi 252 . . . . . . 7 (πœ‘ β†’ (π‘Ÿ ∈ (Baseβ€˜πΆ) β†’ π‘Ÿ ∈ Rng))
98imp 405 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘Ÿ ∈ Rng)
10 zrinitorngc.z . . . . . . 7 (πœ‘ β†’ 𝑍 ∈ (Ring βˆ– NzRing))
1110adantr 479 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ 𝑍 ∈ (Ring βˆ– NzRing))
12 eqid 2725 . . . . . . 7 (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘Ÿ)
13 eqid 2725 . . . . . . 7 (0gβ€˜π‘) = (0gβ€˜π‘)
14 eqid 2725 . . . . . . 7 (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))
1512, 13, 14c0rnghm 20474 . . . . . 6 ((π‘Ÿ ∈ Rng ∧ 𝑍 ∈ (Ring βˆ– NzRing)) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍))
169, 11, 15syl2anc 582 . . . . 5 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍))
17 simpr 483 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍))
183adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘ˆ ∈ 𝑉)
19 eqid 2725 . . . . . . . . . 10 (Hom β€˜πΆ) = (Hom β€˜πΆ)
20 simpr 483 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘Ÿ ∈ (Baseβ€˜πΆ))
21 zrinitorngc.e . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ π‘ˆ)
22 eldifi 4117 . . . . . . . . . . . . . 14 (𝑍 ∈ (Ring βˆ– NzRing) β†’ 𝑍 ∈ Ring)
23 ringrng 20223 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring β†’ 𝑍 ∈ Rng)
2410, 22, 233syl 18 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ Rng)
2521, 24elind 4186 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑍 ∈ (π‘ˆ ∩ Rng))
2625, 4eleqtrrd 2828 . . . . . . . . . . 11 (πœ‘ β†’ 𝑍 ∈ (Baseβ€˜πΆ))
2726adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ 𝑍 ∈ (Baseβ€˜πΆ))
281, 2, 18, 19, 20, 27rngchom 20558 . . . . . . . . 9 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (π‘Ÿ(Hom β€˜πΆ)𝑍) = (π‘Ÿ RngHom 𝑍))
2928eqcomd 2731 . . . . . . . 8 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (π‘Ÿ RngHom 𝑍) = (π‘Ÿ(Hom β€˜πΆ)𝑍))
3029eleq2d 2811 . . . . . . 7 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍) ↔ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍)))
3130biimpa 475 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍))
3228eleq2d 2811 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) ↔ β„Ž ∈ (π‘Ÿ RngHom 𝑍)))
33 eqid 2725 . . . . . . . . . . 11 (Baseβ€˜π‘) = (Baseβ€˜π‘)
3412, 33rnghmf 20389 . . . . . . . . . 10 (β„Ž ∈ (π‘Ÿ RngHom 𝑍) β†’ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘))
3532, 34biimtrdi 252 . . . . . . . . 9 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)))
3635adantr 479 . . . . . . . 8 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) β†’ (β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)))
37 ffn 6715 . . . . . . . . . . 11 (β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘) β†’ β„Ž Fn (Baseβ€˜π‘Ÿ))
3837adantl 480 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) β†’ β„Ž Fn (Baseβ€˜π‘Ÿ))
39 fvex 6903 . . . . . . . . . . . 12 (0gβ€˜π‘) ∈ V
4039, 14fnmpti 6691 . . . . . . . . . . 11 (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) Fn (Baseβ€˜π‘Ÿ)
4140a1i 11 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) Fn (Baseβ€˜π‘Ÿ))
4233, 130ringbas 20467 . . . . . . . . . . . . . . . . 17 (𝑍 ∈ (Ring βˆ– NzRing) β†’ (Baseβ€˜π‘) = {(0gβ€˜π‘)})
4310, 42syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (Baseβ€˜π‘) = {(0gβ€˜π‘)})
4443adantr 479 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (Baseβ€˜π‘) = {(0gβ€˜π‘)})
4544feq3d 6702 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘) ↔ β„Ž:(Baseβ€˜π‘Ÿ)⟢{(0gβ€˜π‘)}))
46 fvconst 7167 . . . . . . . . . . . . . . 15 ((β„Ž:(Baseβ€˜π‘Ÿ)⟢{(0gβ€˜π‘)} ∧ π‘Ž ∈ (Baseβ€˜π‘Ÿ)) β†’ (β„Žβ€˜π‘Ž) = (0gβ€˜π‘))
4746ex 411 . . . . . . . . . . . . . 14 (β„Ž:(Baseβ€˜π‘Ÿ)⟢{(0gβ€˜π‘)} β†’ (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ (β„Žβ€˜π‘Ž) = (0gβ€˜π‘)))
4845, 47biimtrdi 252 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘) β†’ (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ (β„Žβ€˜π‘Ž) = (0gβ€˜π‘))))
4948adantr 479 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) β†’ (β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘) β†’ (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ (β„Žβ€˜π‘Ž) = (0gβ€˜π‘))))
5049imp31 416 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜π‘Ÿ)) β†’ (β„Žβ€˜π‘Ž) = (0gβ€˜π‘))
51 eqidd 2726 . . . . . . . . . . . . 13 (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)))
52 eqidd 2726 . . . . . . . . . . . . 13 ((π‘Ž ∈ (Baseβ€˜π‘Ÿ) ∧ π‘₯ = π‘Ž) β†’ (0gβ€˜π‘) = (0gβ€˜π‘))
53 id 22 . . . . . . . . . . . . 13 (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ π‘Ž ∈ (Baseβ€˜π‘Ÿ))
5439a1i 11 . . . . . . . . . . . . 13 (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ (0gβ€˜π‘) ∈ V)
5551, 52, 53, 54fvmptd 7005 . . . . . . . . . . . 12 (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))β€˜π‘Ž) = (0gβ€˜π‘))
5655adantl 480 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜π‘Ÿ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))β€˜π‘Ž) = (0gβ€˜π‘))
5750, 56eqtr4d 2768 . . . . . . . . . 10 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜π‘Ÿ)) β†’ (β„Žβ€˜π‘Ž) = ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))β€˜π‘Ž))
5838, 41, 57eqfnfvd 7036 . . . . . . . . 9 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)))
5958ex 411 . . . . . . . 8 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) β†’ (β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))))
6036, 59syld 47 . . . . . . 7 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) β†’ (β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))))
6160alrimiv 1922 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) β†’ βˆ€β„Ž(β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))))
6217, 31, 613jca 1125 . . . . 5 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) ∧ βˆ€β„Ž(β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)))))
6316, 62mpdan 685 . . . 4 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) ∧ βˆ€β„Ž(β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)))))
64 eleq1 2813 . . . . 5 (β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) β†’ (β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) ↔ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍)))
6564eqeu 3693 . . . 4 (((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RngHom 𝑍) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) ∧ βˆ€β„Ž(β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)))) β†’ βˆƒ!β„Ž β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍))
6663, 65syl 17 . . 3 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ βˆƒ!β„Ž β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍))
6766ralrimiva 3136 . 2 (πœ‘ β†’ βˆ€π‘Ÿ ∈ (Baseβ€˜πΆ)βˆƒ!β„Ž β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍))
681rngccat 20569 . . . 4 (π‘ˆ ∈ 𝑉 β†’ 𝐢 ∈ Cat)
693, 68syl 17 . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
702, 19, 69, 26istermo 17983 . 2 (πœ‘ β†’ (𝑍 ∈ (TermOβ€˜πΆ) ↔ βˆ€π‘Ÿ ∈ (Baseβ€˜πΆ)βˆƒ!β„Ž β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍)))
7167, 70mpbird 256 1 (πœ‘ β†’ 𝑍 ∈ (TermOβ€˜πΆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084  βˆ€wal 1531   = wceq 1533   ∈ wcel 2098  βˆƒ!weu 2556  βˆ€wral 3051  Vcvv 3463   βˆ– cdif 3936   ∩ cin 3938  {csn 4622   ↦ cmpt 5224   Fn wfn 6536  βŸΆwf 6537  β€˜cfv 6541  (class class class)co 7414  Basecbs 17177  Hom chom 17241  0gc0g 17418  Catccat 17641  TermOctermo 17968  Rngcrng 20094  Ringcrg 20175   RngHom crnghm 20375  NzRingcnzr 20453  RngCatcrngc 20551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-oadd 8487  df-er 8721  df-map 8843  df-pm 8844  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-xnn0 12573  df-z 12587  df-dec 12706  df-uz 12851  df-fz 13515  df-hash 14320  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-hom 17254  df-cco 17255  df-0g 17420  df-cat 17645  df-cid 17646  df-homf 17647  df-ssc 17790  df-resc 17791  df-subc 17792  df-termo 17971  df-estrc 18110  df-mgm 18597  df-mgmhm 18649  df-sgrp 18676  df-mnd 18692  df-mhm 18737  df-grp 18895  df-minusg 18896  df-ghm 19170  df-cmn 19739  df-abl 19740  df-mgp 20077  df-rng 20095  df-ur 20124  df-ring 20177  df-rnghm 20377  df-nzr 20454  df-rngc 20552
This theorem is referenced by:  zrzeroorngc  20579
  Copyright terms: Public domain W3C validator