Step | Hyp | Ref
| Expression |
1 | | zrinitorngc.c |
. . . . . . . . . 10
β’ πΆ = (RngCatβπ) |
2 | | eqid 2732 |
. . . . . . . . . 10
β’
(BaseβπΆ) =
(BaseβπΆ) |
3 | | zrinitorngc.u |
. . . . . . . . . 10
β’ (π β π β π) |
4 | 1, 2, 3 | rngcbas 46853 |
. . . . . . . . 9
β’ (π β (BaseβπΆ) = (π β© Rng)) |
5 | 4 | eleq2d 2819 |
. . . . . . . 8
β’ (π β (π β (BaseβπΆ) β π β (π β© Rng))) |
6 | | elin 3964 |
. . . . . . . . 9
β’ (π β (π β© Rng) β (π β π β§ π β Rng)) |
7 | 6 | simprbi 497 |
. . . . . . . 8
β’ (π β (π β© Rng) β π β Rng) |
8 | 5, 7 | syl6bi 252 |
. . . . . . 7
β’ (π β (π β (BaseβπΆ) β π β Rng)) |
9 | 8 | imp 407 |
. . . . . 6
β’ ((π β§ π β (BaseβπΆ)) β π β Rng) |
10 | | zrinitorngc.z |
. . . . . . 7
β’ (π β π β (Ring β
NzRing)) |
11 | 10 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (BaseβπΆ)) β π β (Ring β
NzRing)) |
12 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
13 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
14 | | eqid 2732 |
. . . . . . 7
β’ (π₯ β (Baseβπ) β¦
(0gβπ)) =
(π₯ β (Baseβπ) β¦
(0gβπ)) |
15 | 12, 13, 14 | c0rnghm 46702 |
. . . . . 6
β’ ((π β Rng β§ π β (Ring β NzRing))
β (π₯ β
(Baseβπ) β¦
(0gβπ))
β (π RngHomo π)) |
16 | 9, 11, 15 | syl2anc 584 |
. . . . 5
β’ ((π β§ π β (BaseβπΆ)) β (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) |
17 | | simpr 485 |
. . . . . 6
β’ (((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) |
18 | 3 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (BaseβπΆ)) β π β π) |
19 | | eqid 2732 |
. . . . . . . . . 10
β’ (Hom
βπΆ) = (Hom
βπΆ) |
20 | | simpr 485 |
. . . . . . . . . 10
β’ ((π β§ π β (BaseβπΆ)) β π β (BaseβπΆ)) |
21 | | zrinitorngc.e |
. . . . . . . . . . . . 13
β’ (π β π β π) |
22 | | eldifi 4126 |
. . . . . . . . . . . . . 14
β’ (π β (Ring β NzRing)
β π β
Ring) |
23 | | ringrng 46645 |
. . . . . . . . . . . . . 14
β’ (π β Ring β π β Rng) |
24 | 10, 22, 23 | 3syl 18 |
. . . . . . . . . . . . 13
β’ (π β π β Rng) |
25 | 21, 24 | elind 4194 |
. . . . . . . . . . . 12
β’ (π β π β (π β© Rng)) |
26 | 25, 4 | eleqtrrd 2836 |
. . . . . . . . . . 11
β’ (π β π β (BaseβπΆ)) |
27 | 26 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (BaseβπΆ)) β π β (BaseβπΆ)) |
28 | 1, 2, 18, 19, 20, 27 | rngchom 46855 |
. . . . . . . . 9
β’ ((π β§ π β (BaseβπΆ)) β (π(Hom βπΆ)π) = (π RngHomo π)) |
29 | 28 | eqcomd 2738 |
. . . . . . . 8
β’ ((π β§ π β (BaseβπΆ)) β (π RngHomo π) = (π(Hom βπΆ)π)) |
30 | 29 | eleq2d 2819 |
. . . . . . 7
β’ ((π β§ π β (BaseβπΆ)) β ((π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π) β (π₯ β (Baseβπ) β¦ (0gβπ)) β (π(Hom βπΆ)π))) |
31 | 30 | biimpa 477 |
. . . . . 6
β’ (((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β (π₯ β (Baseβπ) β¦ (0gβπ)) β (π(Hom βπΆ)π)) |
32 | 28 | eleq2d 2819 |
. . . . . . . . . 10
β’ ((π β§ π β (BaseβπΆ)) β (β β (π(Hom βπΆ)π) β β β (π RngHomo π))) |
33 | | eqid 2732 |
. . . . . . . . . . 11
β’
(Baseβπ) =
(Baseβπ) |
34 | 12, 33 | rnghmf 46687 |
. . . . . . . . . 10
β’ (β β (π RngHomo π) β β:(Baseβπ)βΆ(Baseβπ)) |
35 | 32, 34 | syl6bi 252 |
. . . . . . . . 9
β’ ((π β§ π β (BaseβπΆ)) β (β β (π(Hom βπΆ)π) β β:(Baseβπ)βΆ(Baseβπ))) |
36 | 35 | adantr 481 |
. . . . . . . 8
β’ (((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β (β β (π(Hom βπΆ)π) β β:(Baseβπ)βΆ(Baseβπ))) |
37 | | ffn 6717 |
. . . . . . . . . . 11
β’ (β:(Baseβπ)βΆ(Baseβπ) β β Fn (Baseβπ)) |
38 | 37 | adantl 482 |
. . . . . . . . . 10
β’ ((((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β§ β:(Baseβπ)βΆ(Baseβπ)) β β Fn (Baseβπ)) |
39 | | fvex 6904 |
. . . . . . . . . . . 12
β’
(0gβπ) β V |
40 | 39, 14 | fnmpti 6693 |
. . . . . . . . . . 11
β’ (π₯ β (Baseβπ) β¦
(0gβπ)) Fn
(Baseβπ) |
41 | 40 | a1i 11 |
. . . . . . . . . 10
β’ ((((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β§ β:(Baseβπ)βΆ(Baseβπ)) β (π₯ β (Baseβπ) β¦ (0gβπ)) Fn (Baseβπ)) |
42 | 33, 13 | 0ringbas 46635 |
. . . . . . . . . . . . . . . . 17
β’ (π β (Ring β NzRing)
β (Baseβπ) =
{(0gβπ)}) |
43 | 10, 42 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β (Baseβπ) = {(0gβπ)}) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (BaseβπΆ)) β (Baseβπ) = {(0gβπ)}) |
45 | 44 | feq3d 6704 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β (BaseβπΆ)) β (β:(Baseβπ)βΆ(Baseβπ) β β:(Baseβπ)βΆ{(0gβπ)})) |
46 | | fvconst 7161 |
. . . . . . . . . . . . . . 15
β’ ((β:(Baseβπ)βΆ{(0gβπ)} β§ π β (Baseβπ)) β (ββπ) = (0gβπ)) |
47 | 46 | ex 413 |
. . . . . . . . . . . . . 14
β’ (β:(Baseβπ)βΆ{(0gβπ)} β (π β (Baseβπ) β (ββπ) = (0gβπ))) |
48 | 45, 47 | syl6bi 252 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (BaseβπΆ)) β (β:(Baseβπ)βΆ(Baseβπ) β (π β (Baseβπ) β (ββπ) = (0gβπ)))) |
49 | 48 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β (β:(Baseβπ)βΆ(Baseβπ) β (π β (Baseβπ) β (ββπ) = (0gβπ)))) |
50 | 49 | imp31 418 |
. . . . . . . . . . 11
β’
(((((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β§ β:(Baseβπ)βΆ(Baseβπ)) β§ π β (Baseβπ)) β (ββπ) = (0gβπ)) |
51 | | eqidd 2733 |
. . . . . . . . . . . . 13
β’ (π β (Baseβπ) β (π₯ β (Baseβπ) β¦ (0gβπ)) = (π₯ β (Baseβπ) β¦ (0gβπ))) |
52 | | eqidd 2733 |
. . . . . . . . . . . . 13
β’ ((π β (Baseβπ) β§ π₯ = π) β (0gβπ) = (0gβπ)) |
53 | | id 22 |
. . . . . . . . . . . . 13
β’ (π β (Baseβπ) β π β (Baseβπ)) |
54 | 39 | a1i 11 |
. . . . . . . . . . . . 13
β’ (π β (Baseβπ) β
(0gβπ)
β V) |
55 | 51, 52, 53, 54 | fvmptd 7005 |
. . . . . . . . . . . 12
β’ (π β (Baseβπ) β ((π₯ β (Baseβπ) β¦ (0gβπ))βπ) = (0gβπ)) |
56 | 55 | adantl 482 |
. . . . . . . . . . 11
β’
(((((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β§ β:(Baseβπ)βΆ(Baseβπ)) β§ π β (Baseβπ)) β ((π₯ β (Baseβπ) β¦ (0gβπ))βπ) = (0gβπ)) |
57 | 50, 56 | eqtr4d 2775 |
. . . . . . . . . 10
β’
(((((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β§ β:(Baseβπ)βΆ(Baseβπ)) β§ π β (Baseβπ)) β (ββπ) = ((π₯ β (Baseβπ) β¦ (0gβπ))βπ)) |
58 | 38, 41, 57 | eqfnfvd 7035 |
. . . . . . . . 9
β’ ((((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β§ β:(Baseβπ)βΆ(Baseβπ)) β β = (π₯ β (Baseβπ) β¦ (0gβπ))) |
59 | 58 | ex 413 |
. . . . . . . 8
β’ (((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β (β:(Baseβπ)βΆ(Baseβπ) β β = (π₯ β (Baseβπ) β¦ (0gβπ)))) |
60 | 36, 59 | syld 47 |
. . . . . . 7
β’ (((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β (β β (π(Hom βπΆ)π) β β = (π₯ β (Baseβπ) β¦ (0gβπ)))) |
61 | 60 | alrimiv 1930 |
. . . . . 6
β’ (((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β ββ(β β (π(Hom βπΆ)π) β β = (π₯ β (Baseβπ) β¦ (0gβπ)))) |
62 | 17, 31, 61 | 3jca 1128 |
. . . . 5
β’ (((π β§ π β (BaseβπΆ)) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π)) β ((π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π(Hom βπΆ)π) β§ ββ(β β (π(Hom βπΆ)π) β β = (π₯ β (Baseβπ) β¦ (0gβπ))))) |
63 | 16, 62 | mpdan 685 |
. . . 4
β’ ((π β§ π β (BaseβπΆ)) β ((π₯ β (Baseβπ) β¦ (0gβπ)) β (π RngHomo π) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π(Hom βπΆ)π) β§ ββ(β β (π(Hom βπΆ)π) β β = (π₯ β (Baseβπ) β¦ (0gβπ))))) |
64 | | eleq1 2821 |
. . . . 5
β’ (β = (π₯ β (Baseβπ) β¦ (0gβπ)) β (β β (π(Hom βπΆ)π) β (π₯ β (Baseβπ) β¦ (0gβπ)) β (π(Hom βπΆ)π))) |
65 | 64 | eqeu 3702 |
. . . 4
β’ (((π₯ β (Baseβπ) β¦
(0gβπ))
β (π RngHomo π) β§ (π₯ β (Baseβπ) β¦ (0gβπ)) β (π(Hom βπΆ)π) β§ ββ(β β (π(Hom βπΆ)π) β β = (π₯ β (Baseβπ) β¦ (0gβπ)))) β β!β β β (π(Hom βπΆ)π)) |
66 | 63, 65 | syl 17 |
. . 3
β’ ((π β§ π β (BaseβπΆ)) β β!β β β (π(Hom βπΆ)π)) |
67 | 66 | ralrimiva 3146 |
. 2
β’ (π β βπ β (BaseβπΆ)β!β β β (π(Hom βπΆ)π)) |
68 | 1 | rngccat 46866 |
. . . 4
β’ (π β π β πΆ β Cat) |
69 | 3, 68 | syl 17 |
. . 3
β’ (π β πΆ β Cat) |
70 | 2, 19, 69, 26 | istermo 17946 |
. 2
β’ (π β (π β (TermOβπΆ) β βπ β (BaseβπΆ)β!β β β (π(Hom βπΆ)π))) |
71 | 67, 70 | mpbird 256 |
1
β’ (π β π β (TermOβπΆ)) |