Step | Hyp | Ref
| Expression |
1 | | zrinitorngc.c |
. . . . . . . . . 10
⊢ 𝐶 = (RngCat‘𝑈) |
2 | | eqid 2758 |
. . . . . . . . . 10
⊢
(Base‘𝐶) =
(Base‘𝐶) |
3 | | zrinitorngc.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
4 | 1, 2, 3 | rngcbas 45015 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
5 | 4 | eleq2d 2837 |
. . . . . . . 8
⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Rng))) |
6 | | elin 3876 |
. . . . . . . . 9
⊢ (𝑟 ∈ (𝑈 ∩ Rng) ↔ (𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Rng)) |
7 | 6 | simprbi 500 |
. . . . . . . 8
⊢ (𝑟 ∈ (𝑈 ∩ Rng) → 𝑟 ∈ Rng) |
8 | 5, 7 | syl6bi 256 |
. . . . . . 7
⊢ (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Rng)) |
9 | 8 | imp 410 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Rng) |
10 | | zrinitorngc.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (Ring ∖
NzRing)) |
11 | 10 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖
NzRing)) |
12 | | eqid 2758 |
. . . . . . 7
⊢
(Base‘𝑟) =
(Base‘𝑟) |
13 | | eqid 2758 |
. . . . . . 7
⊢
(0g‘𝑍) = (0g‘𝑍) |
14 | | eqid 2758 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝑟) ↦
(0g‘𝑍)) =
(𝑥 ∈ (Base‘𝑟) ↦
(0g‘𝑍)) |
15 | 12, 13, 14 | c0rnghm 44963 |
. . . . . 6
⊢ ((𝑟 ∈ Rng ∧ 𝑍 ∈ (Ring ∖ NzRing))
→ (𝑥 ∈
(Base‘𝑟) ↦
(0g‘𝑍))
∈ (𝑟 RngHomo 𝑍)) |
16 | 9, 11, 15 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) |
17 | | simpr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) |
18 | 3 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑈 ∈ 𝑉) |
19 | | eqid 2758 |
. . . . . . . . . 10
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
20 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶)) |
21 | | zrinitorngc.e |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 ∈ 𝑈) |
22 | | eldifi 4034 |
. . . . . . . . . . . . . 14
⊢ (𝑍 ∈ (Ring ∖ NzRing)
→ 𝑍 ∈
Ring) |
23 | | ringrng 44929 |
. . . . . . . . . . . . . 14
⊢ (𝑍 ∈ Ring → 𝑍 ∈ Rng) |
24 | 10, 22, 23 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 ∈ Rng) |
25 | 21, 24 | elind 4101 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 ∈ (𝑈 ∩ Rng)) |
26 | 25, 4 | eleqtrrd 2855 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
27 | 26 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Base‘𝐶)) |
28 | 1, 2, 18, 19, 20, 27 | rngchom 45017 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (𝑟(Hom ‘𝐶)𝑍) = (𝑟 RngHomo 𝑍)) |
29 | 28 | eqcomd 2764 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (𝑟 RngHomo 𝑍) = (𝑟(Hom ‘𝐶)𝑍)) |
30 | 29 | eleq2d 2837 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍) ↔ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍))) |
31 | 30 | biimpa 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍)) |
32 | 28 | eleq2d 2837 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℎ ∈ (𝑟(Hom ‘𝐶)𝑍) ↔ ℎ ∈ (𝑟 RngHomo 𝑍))) |
33 | | eqid 2758 |
. . . . . . . . . . 11
⊢
(Base‘𝑍) =
(Base‘𝑍) |
34 | 12, 33 | rnghmf 44949 |
. . . . . . . . . 10
⊢ (ℎ ∈ (𝑟 RngHomo 𝑍) → ℎ:(Base‘𝑟)⟶(Base‘𝑍)) |
35 | 32, 34 | syl6bi 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℎ ∈ (𝑟(Hom ‘𝐶)𝑍) → ℎ:(Base‘𝑟)⟶(Base‘𝑍))) |
36 | 35 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) → (ℎ ∈ (𝑟(Hom ‘𝐶)𝑍) → ℎ:(Base‘𝑟)⟶(Base‘𝑍))) |
37 | | ffn 6503 |
. . . . . . . . . . 11
⊢ (ℎ:(Base‘𝑟)⟶(Base‘𝑍) → ℎ Fn (Base‘𝑟)) |
38 | 37 | adantl 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ ℎ:(Base‘𝑟)⟶(Base‘𝑍)) → ℎ Fn (Base‘𝑟)) |
39 | | fvex 6676 |
. . . . . . . . . . . 12
⊢
(0g‘𝑍) ∈ V |
40 | 39, 14 | fnmpti 6479 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (Base‘𝑟) ↦
(0g‘𝑍)) Fn
(Base‘𝑟) |
41 | 40 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ ℎ:(Base‘𝑟)⟶(Base‘𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) Fn (Base‘𝑟)) |
42 | 33, 13 | 0ringbas 44921 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑍 ∈ (Ring ∖ NzRing)
→ (Base‘𝑍) =
{(0g‘𝑍)}) |
43 | 10, 42 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (Base‘𝑍) = {(0g‘𝑍)}) |
44 | 43 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (Base‘𝑍) = {(0g‘𝑍)}) |
45 | 44 | feq3d 6490 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℎ:(Base‘𝑟)⟶(Base‘𝑍) ↔ ℎ:(Base‘𝑟)⟶{(0g‘𝑍)})) |
46 | | fvconst 6923 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ:(Base‘𝑟)⟶{(0g‘𝑍)} ∧ 𝑎 ∈ (Base‘𝑟)) → (ℎ‘𝑎) = (0g‘𝑍)) |
47 | 46 | ex 416 |
. . . . . . . . . . . . . 14
⊢ (ℎ:(Base‘𝑟)⟶{(0g‘𝑍)} → (𝑎 ∈ (Base‘𝑟) → (ℎ‘𝑎) = (0g‘𝑍))) |
48 | 45, 47 | syl6bi 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → (ℎ:(Base‘𝑟)⟶(Base‘𝑍) → (𝑎 ∈ (Base‘𝑟) → (ℎ‘𝑎) = (0g‘𝑍)))) |
49 | 48 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) → (ℎ:(Base‘𝑟)⟶(Base‘𝑍) → (𝑎 ∈ (Base‘𝑟) → (ℎ‘𝑎) = (0g‘𝑍)))) |
50 | 49 | imp31 421 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ ℎ:(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → (ℎ‘𝑎) = (0g‘𝑍)) |
51 | | eqidd 2759 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (Base‘𝑟) → (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) = (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍))) |
52 | | eqidd 2759 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ (Base‘𝑟) ∧ 𝑥 = 𝑎) → (0g‘𝑍) = (0g‘𝑍)) |
53 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (Base‘𝑟) → 𝑎 ∈ (Base‘𝑟)) |
54 | 39 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (Base‘𝑟) →
(0g‘𝑍)
∈ V) |
55 | 51, 52, 53, 54 | fvmptd 6771 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (Base‘𝑟) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍))‘𝑎) = (0g‘𝑍)) |
56 | 55 | adantl 485 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ ℎ:(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍))‘𝑎) = (0g‘𝑍)) |
57 | 50, 56 | eqtr4d 2796 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ ℎ:(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → (ℎ‘𝑎) = ((𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍))‘𝑎)) |
58 | 38, 41, 57 | eqfnfvd 6801 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) ∧ ℎ:(Base‘𝑟)⟶(Base‘𝑍)) → ℎ = (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍))) |
59 | 58 | ex 416 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) → (ℎ:(Base‘𝑟)⟶(Base‘𝑍) → ℎ = (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)))) |
60 | 36, 59 | syld 47 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) → (ℎ ∈ (𝑟(Hom ‘𝐶)𝑍) → ℎ = (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)))) |
61 | 60 | alrimiv 1928 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) → ∀ℎ(ℎ ∈ (𝑟(Hom ‘𝐶)𝑍) → ℎ = (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)))) |
62 | 17, 31, 61 | 3jca 1125 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀ℎ(ℎ ∈ (𝑟(Hom ‘𝐶)𝑍) → ℎ = (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍))))) |
63 | 16, 62 | mpdan 686 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟 RngHomo 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀ℎ(ℎ ∈ (𝑟(Hom ‘𝐶)𝑍) → ℎ = (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍))))) |
64 | | eleq1 2839 |
. . . . 5
⊢ (ℎ = (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) → (ℎ ∈ (𝑟(Hom ‘𝐶)𝑍) ↔ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍))) |
65 | 64 | eqeu 3622 |
. . . 4
⊢ (((𝑥 ∈ (Base‘𝑟) ↦
(0g‘𝑍))
∈ (𝑟 RngHomo 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀ℎ(ℎ ∈ (𝑟(Hom ‘𝐶)𝑍) → ℎ = (𝑥 ∈ (Base‘𝑟) ↦ (0g‘𝑍)))) → ∃!ℎ ℎ ∈ (𝑟(Hom ‘𝐶)𝑍)) |
66 | 63, 65 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝐶)) → ∃!ℎ ℎ ∈ (𝑟(Hom ‘𝐶)𝑍)) |
67 | 66 | ralrimiva 3113 |
. 2
⊢ (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑟(Hom ‘𝐶)𝑍)) |
68 | 1 | rngccat 45028 |
. . . 4
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
69 | 3, 68 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
70 | 2, 19, 69, 26 | istermo 17337 |
. 2
⊢ (𝜑 → (𝑍 ∈ (TermO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑟(Hom ‘𝐶)𝑍))) |
71 | 67, 70 | mpbird 260 |
1
⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) |