Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrtermoringc Structured version   Visualization version   GIF version

Theorem zrtermoringc 46921
Description: The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrtermoringc.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
zrtermoringc.c 𝐢 = (RingCatβ€˜π‘ˆ)
zrtermoringc.z (πœ‘ β†’ 𝑍 ∈ (Ring βˆ– NzRing))
zrtermoringc.e (πœ‘ β†’ 𝑍 ∈ π‘ˆ)
Assertion
Ref Expression
zrtermoringc (πœ‘ β†’ 𝑍 ∈ (TermOβ€˜πΆ))

Proof of Theorem zrtermoringc
Dummy variables π‘Ž β„Ž π‘Ÿ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zrtermoringc.c . . . . . . . . . 10 𝐢 = (RingCatβ€˜π‘ˆ)
2 eqid 2732 . . . . . . . . . 10 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
3 zrtermoringc.u . . . . . . . . . 10 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
41, 2, 3ringcbas 46862 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜πΆ) = (π‘ˆ ∩ Ring))
54eleq2d 2819 . . . . . . . 8 (πœ‘ β†’ (π‘Ÿ ∈ (Baseβ€˜πΆ) ↔ π‘Ÿ ∈ (π‘ˆ ∩ Ring)))
6 elin 3963 . . . . . . . . 9 (π‘Ÿ ∈ (π‘ˆ ∩ Ring) ↔ (π‘Ÿ ∈ π‘ˆ ∧ π‘Ÿ ∈ Ring))
76simprbi 497 . . . . . . . 8 (π‘Ÿ ∈ (π‘ˆ ∩ Ring) β†’ π‘Ÿ ∈ Ring)
85, 7syl6bi 252 . . . . . . 7 (πœ‘ β†’ (π‘Ÿ ∈ (Baseβ€˜πΆ) β†’ π‘Ÿ ∈ Ring))
98imp 407 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘Ÿ ∈ Ring)
10 zrtermoringc.z . . . . . . 7 (πœ‘ β†’ 𝑍 ∈ (Ring βˆ– NzRing))
1110adantr 481 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ 𝑍 ∈ (Ring βˆ– NzRing))
12 eqid 2732 . . . . . . 7 (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘Ÿ)
13 eqid 2732 . . . . . . 7 (0gβ€˜π‘) = (0gβ€˜π‘)
14 eqid 2732 . . . . . . 7 (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))
1512, 13, 14c0rhm 46696 . . . . . 6 ((π‘Ÿ ∈ Ring ∧ 𝑍 ∈ (Ring βˆ– NzRing)) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍))
169, 11, 15syl2anc 584 . . . . 5 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍))
17 simpr 485 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍))
183adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘ˆ ∈ 𝑉)
19 eqid 2732 . . . . . . . . . 10 (Hom β€˜πΆ) = (Hom β€˜πΆ)
20 simpr 485 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ π‘Ÿ ∈ (Baseβ€˜πΆ))
21 zrtermoringc.e . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ π‘ˆ)
2210eldifad 3959 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ Ring)
2321, 22elind 4193 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑍 ∈ (π‘ˆ ∩ Ring))
2423, 4eleqtrrd 2836 . . . . . . . . . . 11 (πœ‘ β†’ 𝑍 ∈ (Baseβ€˜πΆ))
2524adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ 𝑍 ∈ (Baseβ€˜πΆ))
261, 2, 18, 19, 20, 25ringchom 46864 . . . . . . . . 9 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (π‘Ÿ(Hom β€˜πΆ)𝑍) = (π‘Ÿ RingHom 𝑍))
2726eqcomd 2738 . . . . . . . 8 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (π‘Ÿ RingHom 𝑍) = (π‘Ÿ(Hom β€˜πΆ)𝑍))
2827eleq2d 2819 . . . . . . 7 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍) ↔ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍)))
2928biimpa 477 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍))
3026eleq2d 2819 . . . . . . . . . 10 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) ↔ β„Ž ∈ (π‘Ÿ RingHom 𝑍)))
31 eqid 2732 . . . . . . . . . . 11 (Baseβ€˜π‘) = (Baseβ€˜π‘)
3212, 31rhmf 20255 . . . . . . . . . 10 (β„Ž ∈ (π‘Ÿ RingHom 𝑍) β†’ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘))
3330, 32syl6bi 252 . . . . . . . . 9 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)))
3433adantr 481 . . . . . . . 8 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) β†’ (β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)))
35 ffn 6714 . . . . . . . . . . 11 (β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘) β†’ β„Ž Fn (Baseβ€˜π‘Ÿ))
3635adantl 482 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) β†’ β„Ž Fn (Baseβ€˜π‘Ÿ))
37 fvex 6901 . . . . . . . . . . . 12 (0gβ€˜π‘) ∈ V
3837, 14fnmpti 6690 . . . . . . . . . . 11 (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) Fn (Baseβ€˜π‘Ÿ)
3938a1i 11 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) Fn (Baseβ€˜π‘Ÿ))
4031, 130ringbas 46631 . . . . . . . . . . . . . . . . 17 (𝑍 ∈ (Ring βˆ– NzRing) β†’ (Baseβ€˜π‘) = {(0gβ€˜π‘)})
4110, 40syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (Baseβ€˜π‘) = {(0gβ€˜π‘)})
4241adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (Baseβ€˜π‘) = {(0gβ€˜π‘)})
4342feq3d 6701 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘) ↔ β„Ž:(Baseβ€˜π‘Ÿ)⟢{(0gβ€˜π‘)}))
44 fvconst 7158 . . . . . . . . . . . . . . 15 ((β„Ž:(Baseβ€˜π‘Ÿ)⟢{(0gβ€˜π‘)} ∧ π‘Ž ∈ (Baseβ€˜π‘Ÿ)) β†’ (β„Žβ€˜π‘Ž) = (0gβ€˜π‘))
4544ex 413 . . . . . . . . . . . . . 14 (β„Ž:(Baseβ€˜π‘Ÿ)⟢{(0gβ€˜π‘)} β†’ (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ (β„Žβ€˜π‘Ž) = (0gβ€˜π‘)))
4643, 45syl6bi 252 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ (β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘) β†’ (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ (β„Žβ€˜π‘Ž) = (0gβ€˜π‘))))
4746adantr 481 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) β†’ (β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘) β†’ (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ (β„Žβ€˜π‘Ž) = (0gβ€˜π‘))))
4847imp31 418 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜π‘Ÿ)) β†’ (β„Žβ€˜π‘Ž) = (0gβ€˜π‘))
49 eqidd 2733 . . . . . . . . . . . . 13 (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)))
50 eqidd 2733 . . . . . . . . . . . . 13 ((π‘Ž ∈ (Baseβ€˜π‘Ÿ) ∧ π‘₯ = π‘Ž) β†’ (0gβ€˜π‘) = (0gβ€˜π‘))
51 id 22 . . . . . . . . . . . . 13 (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ π‘Ž ∈ (Baseβ€˜π‘Ÿ))
5237a1i 11 . . . . . . . . . . . . 13 (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ (0gβ€˜π‘) ∈ V)
5349, 50, 51, 52fvmptd 7002 . . . . . . . . . . . 12 (π‘Ž ∈ (Baseβ€˜π‘Ÿ) β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))β€˜π‘Ž) = (0gβ€˜π‘))
5453adantl 482 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜π‘Ÿ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))β€˜π‘Ž) = (0gβ€˜π‘))
5548, 54eqtr4d 2775 . . . . . . . . . 10 (((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) ∧ π‘Ž ∈ (Baseβ€˜π‘Ÿ)) β†’ (β„Žβ€˜π‘Ž) = ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))β€˜π‘Ž))
5636, 39, 55eqfnfvd 7032 . . . . . . . . 9 ((((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) ∧ β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘)) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)))
5756ex 413 . . . . . . . 8 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) β†’ (β„Ž:(Baseβ€˜π‘Ÿ)⟢(Baseβ€˜π‘) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))))
5834, 57syld 47 . . . . . . 7 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) β†’ (β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))))
5958alrimiv 1930 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) β†’ βˆ€β„Ž(β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘))))
6017, 29, 593jca 1128 . . . . 5 (((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) ∧ βˆ€β„Ž(β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)))))
6116, 60mpdan 685 . . . 4 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) ∧ βˆ€β„Ž(β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)))))
62 eleq1 2821 . . . . 5 (β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) β†’ (β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) ↔ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍)))
6362eqeu 3701 . . . 4 (((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ RingHom 𝑍) ∧ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)) ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) ∧ βˆ€β„Ž(β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍) β†’ β„Ž = (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ (0gβ€˜π‘)))) β†’ βˆƒ!β„Ž β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍))
6461, 63syl 17 . . 3 ((πœ‘ ∧ π‘Ÿ ∈ (Baseβ€˜πΆ)) β†’ βˆƒ!β„Ž β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍))
6564ralrimiva 3146 . 2 (πœ‘ β†’ βˆ€π‘Ÿ ∈ (Baseβ€˜πΆ)βˆƒ!β„Ž β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍))
661ringccat 46875 . . . 4 (π‘ˆ ∈ 𝑉 β†’ 𝐢 ∈ Cat)
673, 66syl 17 . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
682, 19, 67, 24istermo 17943 . 2 (πœ‘ β†’ (𝑍 ∈ (TermOβ€˜πΆ) ↔ βˆ€π‘Ÿ ∈ (Baseβ€˜πΆ)βˆƒ!β„Ž β„Ž ∈ (π‘Ÿ(Hom β€˜πΆ)𝑍)))
6965, 68mpbird 256 1 (πœ‘ β†’ 𝑍 ∈ (TermOβ€˜πΆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  βˆƒ!weu 2562  βˆ€wral 3061  Vcvv 3474   βˆ– cdif 3944   ∩ cin 3946  {csn 4627   ↦ cmpt 5230   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Hom chom 17204  0gc0g 17381  Catccat 17604  TermOctermo 17928  Ringcrg 20049   RingHom crh 20240  NzRingcnzr 20283  RingCatcringc 46854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-hom 17217  df-cco 17218  df-0g 17383  df-cat 17608  df-cid 17609  df-homf 17610  df-ssc 17753  df-resc 17754  df-subc 17755  df-termo 17931  df-estrc 18070  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-ghm 19084  df-mgp 19982  df-ur 19999  df-ring 20051  df-rnghom 20243  df-nzr 20284  df-ringc 46856
This theorem is referenced by:  nzerooringczr  46923
  Copyright terms: Public domain W3C validator