MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrtermoringc Structured version   Visualization version   GIF version

Theorem zrtermoringc 20578
Description: The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrtermoringc.u (𝜑𝑈𝑉)
zrtermoringc.c 𝐶 = (RingCat‘𝑈)
zrtermoringc.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
zrtermoringc.e (𝜑𝑍𝑈)
Assertion
Ref Expression
zrtermoringc (𝜑𝑍 ∈ (TermO‘𝐶))

Proof of Theorem zrtermoringc
Dummy variables 𝑎 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zrtermoringc.c . . . . . . . . . 10 𝐶 = (RingCat‘𝑈)
2 eqid 2729 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
3 zrtermoringc.u . . . . . . . . . 10 (𝜑𝑈𝑉)
41, 2, 3ringcbas 20553 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
54eleq2d 2814 . . . . . . . 8 (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring)))
6 elin 3921 . . . . . . . . 9 (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟𝑈𝑟 ∈ Ring))
76simprbi 496 . . . . . . . 8 (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring)
85, 7biimtrdi 253 . . . . . . 7 (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring))
98imp 406 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring)
10 zrtermoringc.z . . . . . . 7 (𝜑𝑍 ∈ (Ring ∖ NzRing))
1110adantr 480 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing))
12 eqid 2729 . . . . . . 7 (Base‘𝑟) = (Base‘𝑟)
13 eqid 2729 . . . . . . 7 (0g𝑍) = (0g𝑍)
14 eqid 2729 . . . . . . 7 (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))
1512, 13, 14c0rhm 20437 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑍 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍))
169, 11, 15syl2anc 584 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍))
17 simpr 484 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍))
183adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑈𝑉)
19 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
20 simpr 484 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶))
21 zrtermoringc.e . . . . . . . . . . . . 13 (𝜑𝑍𝑈)
2210eldifad 3917 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ Ring)
2321, 22elind 4153 . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑈 ∩ Ring))
2423, 4eleqtrrd 2831 . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Base‘𝐶))
261, 2, 18, 19, 20, 25ringchom 20555 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑟(Hom ‘𝐶)𝑍) = (𝑟 RingHom 𝑍))
2726eqcomd 2735 . . . . . . . 8 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑟 RingHom 𝑍) = (𝑟(Hom ‘𝐶)𝑍))
2827eleq2d 2814 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ↔ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍)))
2928biimpa 476 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍))
3026eleq2d 2814 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) ↔ ∈ (𝑟 RingHom 𝑍)))
31 eqid 2729 . . . . . . . . . . 11 (Base‘𝑍) = (Base‘𝑍)
3212, 31rhmf 20388 . . . . . . . . . 10 ( ∈ (𝑟 RingHom 𝑍) → :(Base‘𝑟)⟶(Base‘𝑍))
3330, 32biimtrdi 253 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → :(Base‘𝑟)⟶(Base‘𝑍)))
3433adantr 480 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → :(Base‘𝑟)⟶(Base‘𝑍)))
35 ffn 6656 . . . . . . . . . . 11 (:(Base‘𝑟)⟶(Base‘𝑍) → Fn (Base‘𝑟))
3635adantl 481 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → Fn (Base‘𝑟))
37 fvex 6839 . . . . . . . . . . . 12 (0g𝑍) ∈ V
3837, 14fnmpti 6629 . . . . . . . . . . 11 (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) Fn (Base‘𝑟)
3938a1i 11 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) Fn (Base‘𝑟))
4031, 130ringbas 20431 . . . . . . . . . . . . . . . . 17 (𝑍 ∈ (Ring ∖ NzRing) → (Base‘𝑍) = {(0g𝑍)})
4110, 40syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝑍) = {(0g𝑍)})
4241adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (Base‘𝐶)) → (Base‘𝑍) = {(0g𝑍)})
4342feq3d 6641 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (Base‘𝐶)) → (:(Base‘𝑟)⟶(Base‘𝑍) ↔ :(Base‘𝑟)⟶{(0g𝑍)}))
44 fvconst 7102 . . . . . . . . . . . . . . 15 ((:(Base‘𝑟)⟶{(0g𝑍)} ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = (0g𝑍))
4544ex 412 . . . . . . . . . . . . . 14 (:(Base‘𝑟)⟶{(0g𝑍)} → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍)))
4643, 45biimtrdi 253 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (Base‘𝐶)) → (:(Base‘𝑟)⟶(Base‘𝑍) → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍))))
4746adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (:(Base‘𝑟)⟶(Base‘𝑍) → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍))))
4847imp31 417 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = (0g𝑍))
49 eqidd 2730 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))
50 eqidd 2730 . . . . . . . . . . . . 13 ((𝑎 ∈ (Base‘𝑟) ∧ 𝑥 = 𝑎) → (0g𝑍) = (0g𝑍))
51 id 22 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → 𝑎 ∈ (Base‘𝑟))
5237a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → (0g𝑍) ∈ V)
5349, 50, 51, 52fvmptd 6941 . . . . . . . . . . . 12 (𝑎 ∈ (Base‘𝑟) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎) = (0g𝑍))
5453adantl 481 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎) = (0g𝑍))
5548, 54eqtr4d 2767 . . . . . . . . . 10 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎))
5636, 39, 55eqfnfvd 6972 . . . . . . . . 9 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))
5756ex 412 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (:(Base‘𝑟)⟶(Base‘𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
5834, 57syld 47 . . . . . . 7 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
5958alrimiv 1927 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
6017, 29, 593jca 1128 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))))
6116, 60mpdan 687 . . . 4 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))))
62 eleq1 2816 . . . . 5 ( = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) ↔ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍)))
6362eqeu 3668 . . . 4 (((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))) → ∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
6461, 63syl 17 . . 3 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
6564ralrimiva 3121 . 2 (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
661ringccat 20566 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
673, 66syl 17 . . 3 (𝜑𝐶 ∈ Cat)
682, 19, 67, 24istermo 17922 . 2 (𝜑 → (𝑍 ∈ (TermO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑟(Hom ‘𝐶)𝑍)))
6965, 68mpbird 257 1 (𝜑𝑍 ∈ (TermO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  ∃!weu 2561  wral 3044  Vcvv 3438  cdif 3902  cin 3904  {csn 4579  cmpt 5176   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  0gc0g 17361  Catccat 17588  TermOctermo 17907  Ringcrg 20136   RingHom crh 20372  NzRingcnzr 20415  RingCatcringc 20548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-hom 17203  df-cco 17204  df-0g 17363  df-cat 17592  df-cid 17593  df-homf 17594  df-ssc 17735  df-resc 17736  df-subc 17737  df-termo 17910  df-estrc 18047  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-minusg 18834  df-ghm 19110  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-rhm 20375  df-nzr 20416  df-ringc 20549
This theorem is referenced by:  nzerooringczr  21405
  Copyright terms: Public domain W3C validator