MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrtermoringc Structured version   Visualization version   GIF version

Theorem zrtermoringc 20608
Description: The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrtermoringc.u (𝜑𝑈𝑉)
zrtermoringc.c 𝐶 = (RingCat‘𝑈)
zrtermoringc.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
zrtermoringc.e (𝜑𝑍𝑈)
Assertion
Ref Expression
zrtermoringc (𝜑𝑍 ∈ (TermO‘𝐶))

Proof of Theorem zrtermoringc
Dummy variables 𝑎 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zrtermoringc.c . . . . . . . . . 10 𝐶 = (RingCat‘𝑈)
2 eqid 2728 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
3 zrtermoringc.u . . . . . . . . . 10 (𝜑𝑈𝑉)
41, 2, 3ringcbas 20583 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
54eleq2d 2815 . . . . . . . 8 (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring)))
6 elin 3963 . . . . . . . . 9 (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟𝑈𝑟 ∈ Ring))
76simprbi 496 . . . . . . . 8 (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring)
85, 7biimtrdi 252 . . . . . . 7 (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring))
98imp 406 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring)
10 zrtermoringc.z . . . . . . 7 (𝜑𝑍 ∈ (Ring ∖ NzRing))
1110adantr 480 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing))
12 eqid 2728 . . . . . . 7 (Base‘𝑟) = (Base‘𝑟)
13 eqid 2728 . . . . . . 7 (0g𝑍) = (0g𝑍)
14 eqid 2728 . . . . . . 7 (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))
1512, 13, 14c0rhm 20471 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑍 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍))
169, 11, 15syl2anc 583 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍))
17 simpr 484 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍))
183adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑈𝑉)
19 eqid 2728 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
20 simpr 484 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶))
21 zrtermoringc.e . . . . . . . . . . . . 13 (𝜑𝑍𝑈)
2210eldifad 3959 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ Ring)
2321, 22elind 4194 . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑈 ∩ Ring))
2423, 4eleqtrrd 2832 . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Base‘𝐶))
261, 2, 18, 19, 20, 25ringchom 20585 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑟(Hom ‘𝐶)𝑍) = (𝑟 RingHom 𝑍))
2726eqcomd 2734 . . . . . . . 8 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑟 RingHom 𝑍) = (𝑟(Hom ‘𝐶)𝑍))
2827eleq2d 2815 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ↔ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍)))
2928biimpa 476 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍))
3026eleq2d 2815 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) ↔ ∈ (𝑟 RingHom 𝑍)))
31 eqid 2728 . . . . . . . . . . 11 (Base‘𝑍) = (Base‘𝑍)
3212, 31rhmf 20424 . . . . . . . . . 10 ( ∈ (𝑟 RingHom 𝑍) → :(Base‘𝑟)⟶(Base‘𝑍))
3330, 32biimtrdi 252 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → :(Base‘𝑟)⟶(Base‘𝑍)))
3433adantr 480 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → :(Base‘𝑟)⟶(Base‘𝑍)))
35 ffn 6722 . . . . . . . . . . 11 (:(Base‘𝑟)⟶(Base‘𝑍) → Fn (Base‘𝑟))
3635adantl 481 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → Fn (Base‘𝑟))
37 fvex 6910 . . . . . . . . . . . 12 (0g𝑍) ∈ V
3837, 14fnmpti 6698 . . . . . . . . . . 11 (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) Fn (Base‘𝑟)
3938a1i 11 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) Fn (Base‘𝑟))
4031, 130ringbas 20465 . . . . . . . . . . . . . . . . 17 (𝑍 ∈ (Ring ∖ NzRing) → (Base‘𝑍) = {(0g𝑍)})
4110, 40syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝑍) = {(0g𝑍)})
4241adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (Base‘𝐶)) → (Base‘𝑍) = {(0g𝑍)})
4342feq3d 6709 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (Base‘𝐶)) → (:(Base‘𝑟)⟶(Base‘𝑍) ↔ :(Base‘𝑟)⟶{(0g𝑍)}))
44 fvconst 7173 . . . . . . . . . . . . . . 15 ((:(Base‘𝑟)⟶{(0g𝑍)} ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = (0g𝑍))
4544ex 412 . . . . . . . . . . . . . 14 (:(Base‘𝑟)⟶{(0g𝑍)} → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍)))
4643, 45biimtrdi 252 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (Base‘𝐶)) → (:(Base‘𝑟)⟶(Base‘𝑍) → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍))))
4746adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (:(Base‘𝑟)⟶(Base‘𝑍) → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍))))
4847imp31 417 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = (0g𝑍))
49 eqidd 2729 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))
50 eqidd 2729 . . . . . . . . . . . . 13 ((𝑎 ∈ (Base‘𝑟) ∧ 𝑥 = 𝑎) → (0g𝑍) = (0g𝑍))
51 id 22 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → 𝑎 ∈ (Base‘𝑟))
5237a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → (0g𝑍) ∈ V)
5349, 50, 51, 52fvmptd 7012 . . . . . . . . . . . 12 (𝑎 ∈ (Base‘𝑟) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎) = (0g𝑍))
5453adantl 481 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎) = (0g𝑍))
5548, 54eqtr4d 2771 . . . . . . . . . 10 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎))
5636, 39, 55eqfnfvd 7043 . . . . . . . . 9 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))
5756ex 412 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (:(Base‘𝑟)⟶(Base‘𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
5834, 57syld 47 . . . . . . 7 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
5958alrimiv 1923 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
6017, 29, 593jca 1126 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))))
6116, 60mpdan 686 . . . 4 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))))
62 eleq1 2817 . . . . 5 ( = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) ↔ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍)))
6362eqeu 3701 . . . 4 (((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))) → ∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
6461, 63syl 17 . . 3 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
6564ralrimiva 3143 . 2 (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
661ringccat 20596 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
673, 66syl 17 . . 3 (𝜑𝐶 ∈ Cat)
682, 19, 67, 24istermo 17986 . 2 (𝜑 → (𝑍 ∈ (TermO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑟(Hom ‘𝐶)𝑍)))
6965, 68mpbird 257 1 (𝜑𝑍 ∈ (TermO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1532   = wceq 1534  wcel 2099  ∃!weu 2558  wral 3058  Vcvv 3471  cdif 3944  cin 3946  {csn 4629  cmpt 5231   Fn wfn 6543  wf 6544  cfv 6548  (class class class)co 7420  Basecbs 17180  Hom chom 17244  0gc0g 17421  Catccat 17644  TermOctermo 17971  Ringcrg 20173   RingHom crh 20408  NzRingcnzr 20451  RingCatcringc 20578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9925  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-xnn0 12576  df-z 12590  df-dec 12709  df-uz 12854  df-fz 13518  df-hash 14323  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-hom 17257  df-cco 17258  df-0g 17423  df-cat 17648  df-cid 17649  df-homf 17650  df-ssc 17793  df-resc 17794  df-subc 17795  df-termo 17974  df-estrc 18113  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-mhm 18740  df-grp 18893  df-minusg 18894  df-ghm 19168  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-rhm 20411  df-nzr 20452  df-ringc 20579
This theorem is referenced by:  nzerooringczr  21406
  Copyright terms: Public domain W3C validator