MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrtermoringc Structured version   Visualization version   GIF version

Theorem zrtermoringc 20584
Description: The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrtermoringc.u (𝜑𝑈𝑉)
zrtermoringc.c 𝐶 = (RingCat‘𝑈)
zrtermoringc.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
zrtermoringc.e (𝜑𝑍𝑈)
Assertion
Ref Expression
zrtermoringc (𝜑𝑍 ∈ (TermO‘𝐶))

Proof of Theorem zrtermoringc
Dummy variables 𝑎 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zrtermoringc.c . . . . . . . . . 10 𝐶 = (RingCat‘𝑈)
2 eqid 2729 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
3 zrtermoringc.u . . . . . . . . . 10 (𝜑𝑈𝑉)
41, 2, 3ringcbas 20559 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
54eleq2d 2814 . . . . . . . 8 (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring)))
6 elin 3930 . . . . . . . . 9 (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟𝑈𝑟 ∈ Ring))
76simprbi 496 . . . . . . . 8 (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring)
85, 7biimtrdi 253 . . . . . . 7 (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring))
98imp 406 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring)
10 zrtermoringc.z . . . . . . 7 (𝜑𝑍 ∈ (Ring ∖ NzRing))
1110adantr 480 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing))
12 eqid 2729 . . . . . . 7 (Base‘𝑟) = (Base‘𝑟)
13 eqid 2729 . . . . . . 7 (0g𝑍) = (0g𝑍)
14 eqid 2729 . . . . . . 7 (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))
1512, 13, 14c0rhm 20443 . . . . . 6 ((𝑟 ∈ Ring ∧ 𝑍 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍))
169, 11, 15syl2anc 584 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍))
17 simpr 484 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍))
183adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑈𝑉)
19 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
20 simpr 484 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶))
21 zrtermoringc.e . . . . . . . . . . . . 13 (𝜑𝑍𝑈)
2210eldifad 3926 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ Ring)
2321, 22elind 4163 . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑈 ∩ Ring))
2423, 4eleqtrrd 2831 . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Base‘𝐶))
261, 2, 18, 19, 20, 25ringchom 20561 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑟(Hom ‘𝐶)𝑍) = (𝑟 RingHom 𝑍))
2726eqcomd 2735 . . . . . . . 8 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑟 RingHom 𝑍) = (𝑟(Hom ‘𝐶)𝑍))
2827eleq2d 2814 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ↔ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍)))
2928biimpa 476 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍))
3026eleq2d 2814 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) ↔ ∈ (𝑟 RingHom 𝑍)))
31 eqid 2729 . . . . . . . . . . 11 (Base‘𝑍) = (Base‘𝑍)
3212, 31rhmf 20394 . . . . . . . . . 10 ( ∈ (𝑟 RingHom 𝑍) → :(Base‘𝑟)⟶(Base‘𝑍))
3330, 32biimtrdi 253 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝐶)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → :(Base‘𝑟)⟶(Base‘𝑍)))
3433adantr 480 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → :(Base‘𝑟)⟶(Base‘𝑍)))
35 ffn 6688 . . . . . . . . . . 11 (:(Base‘𝑟)⟶(Base‘𝑍) → Fn (Base‘𝑟))
3635adantl 481 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → Fn (Base‘𝑟))
37 fvex 6871 . . . . . . . . . . . 12 (0g𝑍) ∈ V
3837, 14fnmpti 6661 . . . . . . . . . . 11 (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) Fn (Base‘𝑟)
3938a1i 11 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) Fn (Base‘𝑟))
4031, 130ringbas 20437 . . . . . . . . . . . . . . . . 17 (𝑍 ∈ (Ring ∖ NzRing) → (Base‘𝑍) = {(0g𝑍)})
4110, 40syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝑍) = {(0g𝑍)})
4241adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (Base‘𝐶)) → (Base‘𝑍) = {(0g𝑍)})
4342feq3d 6673 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (Base‘𝐶)) → (:(Base‘𝑟)⟶(Base‘𝑍) ↔ :(Base‘𝑟)⟶{(0g𝑍)}))
44 fvconst 7136 . . . . . . . . . . . . . . 15 ((:(Base‘𝑟)⟶{(0g𝑍)} ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = (0g𝑍))
4544ex 412 . . . . . . . . . . . . . 14 (:(Base‘𝑟)⟶{(0g𝑍)} → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍)))
4643, 45biimtrdi 253 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (Base‘𝐶)) → (:(Base‘𝑟)⟶(Base‘𝑍) → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍))))
4746adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (:(Base‘𝑟)⟶(Base‘𝑍) → (𝑎 ∈ (Base‘𝑟) → (𝑎) = (0g𝑍))))
4847imp31 417 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = (0g𝑍))
49 eqidd 2730 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))
50 eqidd 2730 . . . . . . . . . . . . 13 ((𝑎 ∈ (Base‘𝑟) ∧ 𝑥 = 𝑎) → (0g𝑍) = (0g𝑍))
51 id 22 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → 𝑎 ∈ (Base‘𝑟))
5237a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘𝑟) → (0g𝑍) ∈ V)
5349, 50, 51, 52fvmptd 6975 . . . . . . . . . . . 12 (𝑎 ∈ (Base‘𝑟) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎) = (0g𝑍))
5453adantl 481 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎) = (0g𝑍))
5548, 54eqtr4d 2767 . . . . . . . . . 10 (((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) ∧ 𝑎 ∈ (Base‘𝑟)) → (𝑎) = ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))‘𝑎))
5636, 39, 55eqfnfvd 7006 . . . . . . . . 9 ((((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) ∧ :(Base‘𝑟)⟶(Base‘𝑍)) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))
5756ex 412 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → (:(Base‘𝑟)⟶(Base‘𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
5834, 57syld 47 . . . . . . 7 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
5958alrimiv 1927 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍))))
6017, 29, 593jca 1128 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))))
6116, 60mpdan 687 . . . 4 ((𝜑𝑟 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))))
62 eleq1 2816 . . . . 5 ( = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) → ( ∈ (𝑟(Hom ‘𝐶)𝑍) ↔ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍)))
6362eqeu 3677 . . . 4 (((𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟 RingHom 𝑍) ∧ (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)) ∈ (𝑟(Hom ‘𝐶)𝑍) ∧ ∀( ∈ (𝑟(Hom ‘𝐶)𝑍) → = (𝑥 ∈ (Base‘𝑟) ↦ (0g𝑍)))) → ∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
6461, 63syl 17 . . 3 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
6564ralrimiva 3125 . 2 (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑟(Hom ‘𝐶)𝑍))
661ringccat 20572 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
673, 66syl 17 . . 3 (𝜑𝐶 ∈ Cat)
682, 19, 67, 24istermo 17959 . 2 (𝜑 → (𝑍 ∈ (TermO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑟(Hom ‘𝐶)𝑍)))
6965, 68mpbird 257 1 (𝜑𝑍 ∈ (TermO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  ∃!weu 2561  wral 3044  Vcvv 3447  cdif 3911  cin 3913  {csn 4589  cmpt 5188   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  0gc0g 17402  Catccat 17625  TermOctermo 17944  Ringcrg 20142   RingHom crh 20378  NzRingcnzr 20421  RingCatcringc 20554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-hom 17244  df-cco 17245  df-0g 17404  df-cat 17629  df-cid 17630  df-homf 17631  df-ssc 17772  df-resc 17773  df-subc 17774  df-termo 17947  df-estrc 18084  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-rhm 20381  df-nzr 20422  df-ringc 20555
This theorem is referenced by:  nzerooringczr  21390
  Copyright terms: Public domain W3C validator