Step | Hyp | Ref
| Expression |
1 | | mptexg 6988 |
. . 3
⊢ (𝐵 ∈ 𝑆 → (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) ∈ V) |
2 | 1 | 3ad2ant2 1135 |
. 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) ∈ V) |
3 | | ffvelrn 6853 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) ∧ 𝑢 ∈ 𝐵) → ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎)) |
4 | 3 | expcom 417 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐵 → ((𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) → ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎))) |
5 | 4 | ralimdv 3092 |
. . . . . . . 8
⊢ (𝑢 ∈ 𝐵 → (∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) → ∀𝑎 ∈ 𝐴 ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎))) |
6 | 5 | impcom 411 |
. . . . . . 7
⊢
((∀𝑎 ∈
𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) ∧ 𝑢 ∈ 𝐵) → ∀𝑎 ∈ 𝐴 ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎)) |
7 | 6 | 3ad2antl3 1188 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → ∀𝑎 ∈ 𝐴 ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎)) |
8 | | fveq2 6668 |
. . . . . . . . 9
⊢ (𝑎 = 𝑠 → (𝐹‘𝑎) = (𝐹‘𝑠)) |
9 | 8 | fveq1d 6670 |
. . . . . . . 8
⊢ (𝑎 = 𝑠 → ((𝐹‘𝑎)‘𝑢) = ((𝐹‘𝑠)‘𝑢)) |
10 | | fveq2 6668 |
. . . . . . . 8
⊢ (𝑎 = 𝑠 → (𝐶‘𝑎) = (𝐶‘𝑠)) |
11 | 9, 10 | eleq12d 2827 |
. . . . . . 7
⊢ (𝑎 = 𝑠 → (((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎) ↔ ((𝐹‘𝑠)‘𝑢) ∈ (𝐶‘𝑠))) |
12 | 11 | cbvralvw 3348 |
. . . . . 6
⊢
(∀𝑎 ∈
𝐴 ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎) ↔ ∀𝑠 ∈ 𝐴 ((𝐹‘𝑠)‘𝑢) ∈ (𝐶‘𝑠)) |
13 | 7, 12 | sylib 221 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → ∀𝑠 ∈ 𝐴 ((𝐹‘𝑠)‘𝑢) ∈ (𝐶‘𝑠)) |
14 | | simpl1 1192 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → 𝐴 ∈ 𝑅) |
15 | | mptelixpg 8538 |
. . . . . 6
⊢ (𝐴 ∈ 𝑅 → ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) ∈ X𝑠 ∈ 𝐴 (𝐶‘𝑠) ↔ ∀𝑠 ∈ 𝐴 ((𝐹‘𝑠)‘𝑢) ∈ (𝐶‘𝑠))) |
16 | 14, 15 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) ∈ X𝑠 ∈ 𝐴 (𝐶‘𝑠) ↔ ∀𝑠 ∈ 𝐴 ((𝐹‘𝑠)‘𝑢) ∈ (𝐶‘𝑠))) |
17 | 13, 16 | mpbird 260 |
. . . 4
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) ∈ X𝑠 ∈ 𝐴 (𝐶‘𝑠)) |
18 | | upixp.1 |
. . . . 5
⊢ 𝑋 = X𝑏 ∈ 𝐴 (𝐶‘𝑏) |
19 | | fveq2 6668 |
. . . . . 6
⊢ (𝑏 = 𝑠 → (𝐶‘𝑏) = (𝐶‘𝑠)) |
20 | 19 | cbvixpv 8518 |
. . . . 5
⊢ X𝑏 ∈
𝐴 (𝐶‘𝑏) = X𝑠 ∈ 𝐴 (𝐶‘𝑠) |
21 | 18, 20 | eqtri 2761 |
. . . 4
⊢ 𝑋 = X𝑠 ∈ 𝐴 (𝐶‘𝑠) |
22 | 17, 21 | eleqtrrdi 2844 |
. . 3
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) ∈ 𝑋) |
23 | 22 | fmpttd 6883 |
. 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))):𝐵⟶𝑋) |
24 | | nfv 1920 |
. . . 4
⊢
Ⅎ𝑎 𝐴 ∈ 𝑅 |
25 | | nfv 1920 |
. . . 4
⊢
Ⅎ𝑎 𝐵 ∈ 𝑆 |
26 | | nfra1 3130 |
. . . 4
⊢
Ⅎ𝑎∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) |
27 | 24, 25, 26 | nf3an 1907 |
. . 3
⊢
Ⅎ𝑎(𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) |
28 | | fveq2 6668 |
. . . . . . . . 9
⊢ (𝑠 = 𝑎 → (𝐹‘𝑠) = (𝐹‘𝑎)) |
29 | 28 | fveq1d 6670 |
. . . . . . . 8
⊢ (𝑠 = 𝑎 → ((𝐹‘𝑠)‘𝑢) = ((𝐹‘𝑎)‘𝑢)) |
30 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) = (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) |
31 | | fvex 6681 |
. . . . . . . 8
⊢ ((𝐹‘𝑠)‘𝑢) ∈ V |
32 | 29, 30, 31 | fvmpt3i 6774 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐴 → ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))‘𝑎) = ((𝐹‘𝑎)‘𝑢)) |
33 | 32 | adantl 485 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))‘𝑎) = ((𝐹‘𝑎)‘𝑢)) |
34 | 33 | mpteq2dv 5123 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝑢 ∈ 𝐵 ↦ ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))‘𝑎)) = (𝑢 ∈ 𝐵 ↦ ((𝐹‘𝑎)‘𝑢))) |
35 | 22 | adantlr 715 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) ∈ 𝑋) |
36 | | eqidd 2739 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))) |
37 | | fveq2 6668 |
. . . . . . . . 9
⊢ (𝑤 = 𝑎 → (𝑥‘𝑤) = (𝑥‘𝑎)) |
38 | 37 | mpteq2dv 5123 |
. . . . . . . 8
⊢ (𝑤 = 𝑎 → (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑤)) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑎))) |
39 | | upixp.2 |
. . . . . . . 8
⊢ 𝑃 = (𝑤 ∈ 𝐴 ↦ (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑤))) |
40 | | fvex 6681 |
. . . . . . . . . . . 12
⊢ (𝐶‘𝑏) ∈ V |
41 | 40 | rgenw 3065 |
. . . . . . . . . . 11
⊢
∀𝑏 ∈
𝐴 (𝐶‘𝑏) ∈ V |
42 | | ixpexg 8525 |
. . . . . . . . . . 11
⊢
(∀𝑏 ∈
𝐴 (𝐶‘𝑏) ∈ V → X𝑏 ∈
𝐴 (𝐶‘𝑏) ∈ V) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . . 10
⊢ X𝑏 ∈
𝐴 (𝐶‘𝑏) ∈ V |
44 | 18, 43 | eqeltri 2829 |
. . . . . . . . 9
⊢ 𝑋 ∈ V |
45 | 44 | mptex 6990 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑤)) ∈ V |
46 | 38, 39, 45 | fvmpt3i 6774 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐴 → (𝑃‘𝑎) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑎))) |
47 | 46 | adantl 485 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝑃‘𝑎) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑎))) |
48 | | fveq1 6667 |
. . . . . 6
⊢ (𝑥 = (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) → (𝑥‘𝑎) = ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))‘𝑎)) |
49 | 35, 36, 47, 48 | fmptco 6895 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))) = (𝑢 ∈ 𝐵 ↦ ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))‘𝑎))) |
50 | | rsp 3117 |
. . . . . . . 8
⊢
(∀𝑎 ∈
𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) → (𝑎 ∈ 𝐴 → (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎))) |
51 | 50 | 3ad2ant3 1136 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → (𝑎 ∈ 𝐴 → (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎))) |
52 | 51 | imp 410 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) |
53 | 52 | feqmptd 6731 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) = (𝑢 ∈ 𝐵 ↦ ((𝐹‘𝑎)‘𝑢))) |
54 | 34, 49, 53 | 3eqtr4rd 2784 |
. . . 4
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) |
55 | 54 | ex 416 |
. . 3
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → (𝑎 ∈ 𝐴 → (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))))) |
56 | 27, 55 | ralrimi 3127 |
. 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) |
57 | | simprl 771 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) → ℎ:𝐵⟶𝑋) |
58 | 57 | feqmptd 6731 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) → ℎ = (𝑢 ∈ 𝐵 ↦ (ℎ‘𝑢))) |
59 | | simplrr 778 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ)) |
60 | | fveq2 6668 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑠 → (𝑃‘𝑎) = (𝑃‘𝑠)) |
61 | 60 | coeq1d 5698 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑠 → ((𝑃‘𝑎) ∘ ℎ) = ((𝑃‘𝑠) ∘ ℎ)) |
62 | 8, 61 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑠 → ((𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ) ↔ (𝐹‘𝑠) = ((𝑃‘𝑠) ∘ ℎ))) |
63 | 62 | rspccva 3523 |
. . . . . . . . . . 11
⊢
((∀𝑎 ∈
𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ) ∧ 𝑠 ∈ 𝐴) → (𝐹‘𝑠) = ((𝑃‘𝑠) ∘ ℎ)) |
64 | 59, 63 | sylan 583 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → (𝐹‘𝑠) = ((𝑃‘𝑠) ∘ ℎ)) |
65 | 64 | fveq1d 6670 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((𝐹‘𝑠)‘𝑢) = (((𝑃‘𝑠) ∘ ℎ)‘𝑢)) |
66 | | fvco3 6761 |
. . . . . . . . . . 11
⊢ ((ℎ:𝐵⟶𝑋 ∧ 𝑢 ∈ 𝐵) → (((𝑃‘𝑠) ∘ ℎ)‘𝑢) = ((𝑃‘𝑠)‘(ℎ‘𝑢))) |
67 | 57, 66 | sylan 583 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (((𝑃‘𝑠) ∘ ℎ)‘𝑢) = ((𝑃‘𝑠)‘(ℎ‘𝑢))) |
68 | 67 | adantr 484 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → (((𝑃‘𝑠) ∘ ℎ)‘𝑢) = ((𝑃‘𝑠)‘(ℎ‘𝑢))) |
69 | | fveq2 6668 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑠 → (𝑥‘𝑤) = (𝑥‘𝑠)) |
70 | 69 | mpteq2dv 5123 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑠 → (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑤)) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))) |
71 | 70, 39, 45 | fvmpt3i 6774 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ 𝐴 → (𝑃‘𝑠) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))) |
72 | 71 | adantl 485 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → (𝑃‘𝑠) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))) |
73 | 72 | fveq1d 6670 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((𝑃‘𝑠)‘(ℎ‘𝑢)) = ((𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))‘(ℎ‘𝑢))) |
74 | | ffvelrn 6853 |
. . . . . . . . . . . . 13
⊢ ((ℎ:𝐵⟶𝑋 ∧ 𝑢 ∈ 𝐵) → (ℎ‘𝑢) ∈ 𝑋) |
75 | 57, 74 | sylan 583 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (ℎ‘𝑢) ∈ 𝑋) |
76 | | fveq1 6667 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (ℎ‘𝑢) → (𝑥‘𝑠) = ((ℎ‘𝑢)‘𝑠)) |
77 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠)) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠)) |
78 | | fvex 6681 |
. . . . . . . . . . . . 13
⊢ (𝑥‘𝑠) ∈ V |
79 | 76, 77, 78 | fvmpt3i 6774 |
. . . . . . . . . . . 12
⊢ ((ℎ‘𝑢) ∈ 𝑋 → ((𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))‘(ℎ‘𝑢)) = ((ℎ‘𝑢)‘𝑠)) |
80 | 75, 79 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → ((𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))‘(ℎ‘𝑢)) = ((ℎ‘𝑢)‘𝑠)) |
81 | 80 | adantr 484 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))‘(ℎ‘𝑢)) = ((ℎ‘𝑢)‘𝑠)) |
82 | 73, 81 | eqtrd 2773 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((𝑃‘𝑠)‘(ℎ‘𝑢)) = ((ℎ‘𝑢)‘𝑠)) |
83 | 65, 68, 82 | 3eqtrd 2777 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((𝐹‘𝑠)‘𝑢) = ((ℎ‘𝑢)‘𝑠)) |
84 | 83 | mpteq2dva 5122 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) = (𝑠 ∈ 𝐴 ↦ ((ℎ‘𝑢)‘𝑠))) |
85 | 75, 18 | eleqtrdi 2843 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (ℎ‘𝑢) ∈ X𝑏 ∈ 𝐴 (𝐶‘𝑏)) |
86 | | ixpfn 8506 |
. . . . . . . . 9
⊢ ((ℎ‘𝑢) ∈ X𝑏 ∈ 𝐴 (𝐶‘𝑏) → (ℎ‘𝑢) Fn 𝐴) |
87 | 85, 86 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (ℎ‘𝑢) Fn 𝐴) |
88 | | dffn5 6722 |
. . . . . . . 8
⊢ ((ℎ‘𝑢) Fn 𝐴 ↔ (ℎ‘𝑢) = (𝑠 ∈ 𝐴 ↦ ((ℎ‘𝑢)‘𝑠))) |
89 | 87, 88 | sylib 221 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (ℎ‘𝑢) = (𝑠 ∈ 𝐴 ↦ ((ℎ‘𝑢)‘𝑠))) |
90 | 84, 89 | eqtr4d 2776 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) = (ℎ‘𝑢)) |
91 | 90 | mpteq2dva 5122 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) → (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) = (𝑢 ∈ 𝐵 ↦ (ℎ‘𝑢))) |
92 | 58, 91 | eqtr4d 2776 |
. . . 4
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) → ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))) |
93 | 92 | ex 416 |
. . 3
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → ((ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ)) → ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) |
94 | 93 | alrimiv 1933 |
. 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → ∀ℎ((ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ)) → ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) |
95 | | feq1 6479 |
. . . 4
⊢ (ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) → (ℎ:𝐵⟶𝑋 ↔ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))):𝐵⟶𝑋)) |
96 | | coeq2 5695 |
. . . . . 6
⊢ (ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) → ((𝑃‘𝑎) ∘ ℎ) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) |
97 | 96 | eqeq2d 2749 |
. . . . 5
⊢ (ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) → ((𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ) ↔ (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))))) |
98 | 97 | ralbidv 3109 |
. . . 4
⊢ (ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) → (∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ) ↔ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))))) |
99 | 95, 98 | anbi12d 634 |
. . 3
⊢ (ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) → ((ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ)) ↔ ((𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))):𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))))) |
100 | 99 | eqeu 3603 |
. 2
⊢ (((𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) ∈ V ∧ ((𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))):𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) ∧ ∀ℎ((ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ)) → ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) → ∃!ℎ(ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) |
101 | 2, 23, 56, 94, 100 | syl121anc 1376 |
1
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → ∃!ℎ(ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) |