| Step | Hyp | Ref
| Expression |
| 1 | | mptexg 7241 |
. . 3
⊢ (𝐵 ∈ 𝑆 → (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) ∈ V) |
| 2 | 1 | 3ad2ant2 1135 |
. 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) ∈ V) |
| 3 | | ffvelcdm 7101 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) ∧ 𝑢 ∈ 𝐵) → ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎)) |
| 4 | 3 | expcom 413 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐵 → ((𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) → ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎))) |
| 5 | 4 | ralimdv 3169 |
. . . . . . . 8
⊢ (𝑢 ∈ 𝐵 → (∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) → ∀𝑎 ∈ 𝐴 ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎))) |
| 6 | 5 | impcom 407 |
. . . . . . 7
⊢
((∀𝑎 ∈
𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) ∧ 𝑢 ∈ 𝐵) → ∀𝑎 ∈ 𝐴 ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎)) |
| 7 | 6 | 3ad2antl3 1188 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → ∀𝑎 ∈ 𝐴 ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎)) |
| 8 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑎 = 𝑠 → (𝐹‘𝑎) = (𝐹‘𝑠)) |
| 9 | 8 | fveq1d 6908 |
. . . . . . . 8
⊢ (𝑎 = 𝑠 → ((𝐹‘𝑎)‘𝑢) = ((𝐹‘𝑠)‘𝑢)) |
| 10 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑎 = 𝑠 → (𝐶‘𝑎) = (𝐶‘𝑠)) |
| 11 | 9, 10 | eleq12d 2835 |
. . . . . . 7
⊢ (𝑎 = 𝑠 → (((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎) ↔ ((𝐹‘𝑠)‘𝑢) ∈ (𝐶‘𝑠))) |
| 12 | 11 | cbvralvw 3237 |
. . . . . 6
⊢
(∀𝑎 ∈
𝐴 ((𝐹‘𝑎)‘𝑢) ∈ (𝐶‘𝑎) ↔ ∀𝑠 ∈ 𝐴 ((𝐹‘𝑠)‘𝑢) ∈ (𝐶‘𝑠)) |
| 13 | 7, 12 | sylib 218 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → ∀𝑠 ∈ 𝐴 ((𝐹‘𝑠)‘𝑢) ∈ (𝐶‘𝑠)) |
| 14 | | simpl1 1192 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → 𝐴 ∈ 𝑅) |
| 15 | | mptelixpg 8975 |
. . . . . 6
⊢ (𝐴 ∈ 𝑅 → ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) ∈ X𝑠 ∈ 𝐴 (𝐶‘𝑠) ↔ ∀𝑠 ∈ 𝐴 ((𝐹‘𝑠)‘𝑢) ∈ (𝐶‘𝑠))) |
| 16 | 14, 15 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) ∈ X𝑠 ∈ 𝐴 (𝐶‘𝑠) ↔ ∀𝑠 ∈ 𝐴 ((𝐹‘𝑠)‘𝑢) ∈ (𝐶‘𝑠))) |
| 17 | 13, 16 | mpbird 257 |
. . . 4
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) ∈ X𝑠 ∈ 𝐴 (𝐶‘𝑠)) |
| 18 | | upixp.1 |
. . . . 5
⊢ 𝑋 = X𝑏 ∈ 𝐴 (𝐶‘𝑏) |
| 19 | | fveq2 6906 |
. . . . . 6
⊢ (𝑏 = 𝑠 → (𝐶‘𝑏) = (𝐶‘𝑠)) |
| 20 | 19 | cbvixpv 8955 |
. . . . 5
⊢ X𝑏 ∈
𝐴 (𝐶‘𝑏) = X𝑠 ∈ 𝐴 (𝐶‘𝑠) |
| 21 | 18, 20 | eqtri 2765 |
. . . 4
⊢ 𝑋 = X𝑠 ∈ 𝐴 (𝐶‘𝑠) |
| 22 | 17, 21 | eleqtrrdi 2852 |
. . 3
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑢 ∈ 𝐵) → (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) ∈ 𝑋) |
| 23 | 22 | fmpttd 7135 |
. 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))):𝐵⟶𝑋) |
| 24 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑎 𝐴 ∈ 𝑅 |
| 25 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑎 𝐵 ∈ 𝑆 |
| 26 | | nfra1 3284 |
. . . 4
⊢
Ⅎ𝑎∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) |
| 27 | 24, 25, 26 | nf3an 1901 |
. . 3
⊢
Ⅎ𝑎(𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) |
| 28 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑠 = 𝑎 → (𝐹‘𝑠) = (𝐹‘𝑎)) |
| 29 | 28 | fveq1d 6908 |
. . . . . . . 8
⊢ (𝑠 = 𝑎 → ((𝐹‘𝑠)‘𝑢) = ((𝐹‘𝑎)‘𝑢)) |
| 30 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) = (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) |
| 31 | | fvex 6919 |
. . . . . . . 8
⊢ ((𝐹‘𝑠)‘𝑢) ∈ V |
| 32 | 29, 30, 31 | fvmpt3i 7021 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐴 → ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))‘𝑎) = ((𝐹‘𝑎)‘𝑢)) |
| 33 | 32 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))‘𝑎) = ((𝐹‘𝑎)‘𝑢)) |
| 34 | 33 | mpteq2dv 5244 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝑢 ∈ 𝐵 ↦ ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))‘𝑎)) = (𝑢 ∈ 𝐵 ↦ ((𝐹‘𝑎)‘𝑢))) |
| 35 | 22 | adantlr 715 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) ∈ 𝑋) |
| 36 | | eqidd 2738 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))) |
| 37 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑤 = 𝑎 → (𝑥‘𝑤) = (𝑥‘𝑎)) |
| 38 | 37 | mpteq2dv 5244 |
. . . . . . . 8
⊢ (𝑤 = 𝑎 → (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑤)) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑎))) |
| 39 | | upixp.2 |
. . . . . . . 8
⊢ 𝑃 = (𝑤 ∈ 𝐴 ↦ (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑤))) |
| 40 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝐶‘𝑏) ∈ V |
| 41 | 40 | rgenw 3065 |
. . . . . . . . . . 11
⊢
∀𝑏 ∈
𝐴 (𝐶‘𝑏) ∈ V |
| 42 | | ixpexg 8962 |
. . . . . . . . . . 11
⊢
(∀𝑏 ∈
𝐴 (𝐶‘𝑏) ∈ V → X𝑏 ∈
𝐴 (𝐶‘𝑏) ∈ V) |
| 43 | 41, 42 | ax-mp 5 |
. . . . . . . . . 10
⊢ X𝑏 ∈
𝐴 (𝐶‘𝑏) ∈ V |
| 44 | 18, 43 | eqeltri 2837 |
. . . . . . . . 9
⊢ 𝑋 ∈ V |
| 45 | 44 | mptex 7243 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑤)) ∈ V |
| 46 | 38, 39, 45 | fvmpt3i 7021 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐴 → (𝑃‘𝑎) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑎))) |
| 47 | 46 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝑃‘𝑎) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑎))) |
| 48 | | fveq1 6905 |
. . . . . 6
⊢ (𝑥 = (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) → (𝑥‘𝑎) = ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))‘𝑎)) |
| 49 | 35, 36, 47, 48 | fmptco 7149 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))) = (𝑢 ∈ 𝐵 ↦ ((𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))‘𝑎))) |
| 50 | | rsp 3247 |
. . . . . . . 8
⊢
(∀𝑎 ∈
𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎) → (𝑎 ∈ 𝐴 → (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎))) |
| 51 | 50 | 3ad2ant3 1136 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → (𝑎 ∈ 𝐴 → (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎))) |
| 52 | 51 | imp 406 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) |
| 53 | 52 | feqmptd 6977 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) = (𝑢 ∈ 𝐵 ↦ ((𝐹‘𝑎)‘𝑢))) |
| 54 | 34, 49, 53 | 3eqtr4rd 2788 |
. . . 4
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) |
| 55 | 54 | ex 412 |
. . 3
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → (𝑎 ∈ 𝐴 → (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))))) |
| 56 | 27, 55 | ralrimi 3257 |
. 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) |
| 57 | | simprl 771 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) → ℎ:𝐵⟶𝑋) |
| 58 | 57 | feqmptd 6977 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) → ℎ = (𝑢 ∈ 𝐵 ↦ (ℎ‘𝑢))) |
| 59 | | simplrr 778 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ)) |
| 60 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑠 → (𝑃‘𝑎) = (𝑃‘𝑠)) |
| 61 | 60 | coeq1d 5872 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑠 → ((𝑃‘𝑎) ∘ ℎ) = ((𝑃‘𝑠) ∘ ℎ)) |
| 62 | 8, 61 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑠 → ((𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ) ↔ (𝐹‘𝑠) = ((𝑃‘𝑠) ∘ ℎ))) |
| 63 | 62 | rspccva 3621 |
. . . . . . . . . . 11
⊢
((∀𝑎 ∈
𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ) ∧ 𝑠 ∈ 𝐴) → (𝐹‘𝑠) = ((𝑃‘𝑠) ∘ ℎ)) |
| 64 | 59, 63 | sylan 580 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → (𝐹‘𝑠) = ((𝑃‘𝑠) ∘ ℎ)) |
| 65 | 64 | fveq1d 6908 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((𝐹‘𝑠)‘𝑢) = (((𝑃‘𝑠) ∘ ℎ)‘𝑢)) |
| 66 | | fvco3 7008 |
. . . . . . . . . . 11
⊢ ((ℎ:𝐵⟶𝑋 ∧ 𝑢 ∈ 𝐵) → (((𝑃‘𝑠) ∘ ℎ)‘𝑢) = ((𝑃‘𝑠)‘(ℎ‘𝑢))) |
| 67 | 57, 66 | sylan 580 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (((𝑃‘𝑠) ∘ ℎ)‘𝑢) = ((𝑃‘𝑠)‘(ℎ‘𝑢))) |
| 68 | 67 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → (((𝑃‘𝑠) ∘ ℎ)‘𝑢) = ((𝑃‘𝑠)‘(ℎ‘𝑢))) |
| 69 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑠 → (𝑥‘𝑤) = (𝑥‘𝑠)) |
| 70 | 69 | mpteq2dv 5244 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑠 → (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑤)) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))) |
| 71 | 70, 39, 45 | fvmpt3i 7021 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ 𝐴 → (𝑃‘𝑠) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))) |
| 72 | 71 | adantl 481 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → (𝑃‘𝑠) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))) |
| 73 | 72 | fveq1d 6908 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((𝑃‘𝑠)‘(ℎ‘𝑢)) = ((𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))‘(ℎ‘𝑢))) |
| 74 | | ffvelcdm 7101 |
. . . . . . . . . . . . 13
⊢ ((ℎ:𝐵⟶𝑋 ∧ 𝑢 ∈ 𝐵) → (ℎ‘𝑢) ∈ 𝑋) |
| 75 | 57, 74 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (ℎ‘𝑢) ∈ 𝑋) |
| 76 | | fveq1 6905 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (ℎ‘𝑢) → (𝑥‘𝑠) = ((ℎ‘𝑢)‘𝑠)) |
| 77 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠)) = (𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠)) |
| 78 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢ (𝑥‘𝑠) ∈ V |
| 79 | 76, 77, 78 | fvmpt3i 7021 |
. . . . . . . . . . . 12
⊢ ((ℎ‘𝑢) ∈ 𝑋 → ((𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))‘(ℎ‘𝑢)) = ((ℎ‘𝑢)‘𝑠)) |
| 80 | 75, 79 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → ((𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))‘(ℎ‘𝑢)) = ((ℎ‘𝑢)‘𝑠)) |
| 81 | 80 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((𝑥 ∈ 𝑋 ↦ (𝑥‘𝑠))‘(ℎ‘𝑢)) = ((ℎ‘𝑢)‘𝑠)) |
| 82 | 73, 81 | eqtrd 2777 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((𝑃‘𝑠)‘(ℎ‘𝑢)) = ((ℎ‘𝑢)‘𝑠)) |
| 83 | 65, 68, 82 | 3eqtrd 2781 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((𝐹‘𝑠)‘𝑢) = ((ℎ‘𝑢)‘𝑠)) |
| 84 | 83 | mpteq2dva 5242 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) = (𝑠 ∈ 𝐴 ↦ ((ℎ‘𝑢)‘𝑠))) |
| 85 | 75, 18 | eleqtrdi 2851 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (ℎ‘𝑢) ∈ X𝑏 ∈ 𝐴 (𝐶‘𝑏)) |
| 86 | | ixpfn 8943 |
. . . . . . . . 9
⊢ ((ℎ‘𝑢) ∈ X𝑏 ∈ 𝐴 (𝐶‘𝑏) → (ℎ‘𝑢) Fn 𝐴) |
| 87 | 85, 86 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (ℎ‘𝑢) Fn 𝐴) |
| 88 | | dffn5 6967 |
. . . . . . . 8
⊢ ((ℎ‘𝑢) Fn 𝐴 ↔ (ℎ‘𝑢) = (𝑠 ∈ 𝐴 ↦ ((ℎ‘𝑢)‘𝑠))) |
| 89 | 87, 88 | sylib 218 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (ℎ‘𝑢) = (𝑠 ∈ 𝐴 ↦ ((ℎ‘𝑢)‘𝑠))) |
| 90 | 84, 89 | eqtr4d 2780 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) ∧ 𝑢 ∈ 𝐵) → (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)) = (ℎ‘𝑢)) |
| 91 | 90 | mpteq2dva 5242 |
. . . . 5
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) → (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) = (𝑢 ∈ 𝐵 ↦ (ℎ‘𝑢))) |
| 92 | 58, 91 | eqtr4d 2780 |
. . . 4
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) ∧ (ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) → ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))) |
| 93 | 92 | ex 412 |
. . 3
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → ((ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ)) → ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) |
| 94 | 93 | alrimiv 1927 |
. 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → ∀ℎ((ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ)) → ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) |
| 95 | | feq1 6716 |
. . . 4
⊢ (ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) → (ℎ:𝐵⟶𝑋 ↔ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))):𝐵⟶𝑋)) |
| 96 | | coeq2 5869 |
. . . . . 6
⊢ (ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) → ((𝑃‘𝑎) ∘ ℎ) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) |
| 97 | 96 | eqeq2d 2748 |
. . . . 5
⊢ (ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) → ((𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ) ↔ (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))))) |
| 98 | 97 | ralbidv 3178 |
. . . 4
⊢ (ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) → (∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ) ↔ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢)))))) |
| 99 | 95, 98 | anbi12d 632 |
. . 3
⊢ (ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) → ((ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ)) ↔ ((𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))):𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))))) |
| 100 | 99 | eqeu 3712 |
. 2
⊢ (((𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))) ∈ V ∧ ((𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))):𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) ∧ ∀ℎ((ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ)) → ℎ = (𝑢 ∈ 𝐵 ↦ (𝑠 ∈ 𝐴 ↦ ((𝐹‘𝑠)‘𝑢))))) → ∃!ℎ(ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) |
| 101 | 2, 23, 56, 94, 100 | syl121anc 1377 |
1
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎):𝐵⟶(𝐶‘𝑎)) → ∃!ℎ(ℎ:𝐵⟶𝑋 ∧ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = ((𝑃‘𝑎) ∘ ℎ))) |