MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringurd Structured version   Visualization version   GIF version

Theorem ringurd 20105
Description: Deduce the unity element of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016.)
Hypotheses
Ref Expression
ringurd.b (𝜑𝐵 = (Base‘𝑅))
ringurd.p (𝜑· = (.r𝑅))
ringurd.z (𝜑1𝐵)
ringurd.i ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
ringurd.j ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
Assertion
Ref Expression
ringurd (𝜑1 = (1r𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, 1   𝑥, ·   𝜑,𝑥

Proof of Theorem ringurd
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2733 . . 3 (.r𝑅) = (.r𝑅)
3 eqid 2733 . . 3 (1r𝑅) = (1r𝑅)
41, 2, 3dfur2 20104 . 2 (1r𝑅) = (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
5 ringurd.z . . . 4 (𝜑1𝐵)
6 ringurd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
75, 6eleqtrd 2835 . . 3 (𝜑1 ∈ (Base‘𝑅))
8 ringurd.i . . . . . 6 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
9 ringurd.j . . . . . 6 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
108, 9jca 511 . . . . 5 ((𝜑𝑥𝐵) → (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥))
1110ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥))
12 ringurd.p . . . . . . . . 9 (𝜑· = (.r𝑅))
1312adantr 480 . . . . . . . 8 ((𝜑𝑥𝐵) → · = (.r𝑅))
1413oveqd 7369 . . . . . . 7 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = ( 1 (.r𝑅)𝑥))
1514eqeq1d 2735 . . . . . 6 ((𝜑𝑥𝐵) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 (.r𝑅)𝑥) = 𝑥))
1613oveqd 7369 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = (𝑥(.r𝑅) 1 ))
1716eqeq1d 2735 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑥 · 1 ) = 𝑥 ↔ (𝑥(.r𝑅) 1 ) = 𝑥))
1815, 17anbi12d 632 . . . . 5 ((𝜑𝑥𝐵) → ((( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ (( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
196, 18raleqbidva 3299 . . . 4 (𝜑 → (∀𝑥𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
2011, 19mpbid 232 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥))
216eleq2d 2819 . . . . . . . 8 (𝜑 → (𝑒𝐵𝑒 ∈ (Base‘𝑅)))
2213oveqd 7369 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑒 · 𝑥) = (𝑒(.r𝑅)𝑥))
2322eqeq1d 2735 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(.r𝑅)𝑥) = 𝑥))
2413oveqd 7369 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑥 · 𝑒) = (𝑥(.r𝑅)𝑒))
2524eqeq1d 2735 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(.r𝑅)𝑒) = 𝑥))
2623, 25anbi12d 632 . . . . . . . . 9 ((𝜑𝑥𝐵) → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
276, 26raleqbidva 3299 . . . . . . . 8 (𝜑 → (∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
2821, 27anbi12d 632 . . . . . . 7 (𝜑 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))))
298ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
3029adantr 480 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
31 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑒𝐵)
32 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → 𝑥 = 𝑒)
3332oveq2d 7368 . . . . . . . . . . . . 13 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → ( 1 · 𝑥) = ( 1 · 𝑒))
3433, 32eqeq12d 2749 . . . . . . . . . . . 12 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 · 𝑒) = 𝑒))
3531, 34rspcdv 3565 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (∀𝑥𝐵 ( 1 · 𝑥) = 𝑥 → ( 1 · 𝑒) = 𝑒))
3630, 35mpd 15 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ( 1 · 𝑒) = 𝑒)
3736adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 𝑒)
385adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 1𝐵)
39 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))
40 oveq2 7360 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑒 · 𝑥) = (𝑒 · 1 ))
41 id 22 . . . . . . . . . . . . . 14 (𝑥 = 1𝑥 = 1 )
4240, 41eqeq12d 2749 . . . . . . . . . . . . 13 (𝑥 = 1 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒 · 1 ) = 1 ))
43 oveq1 7359 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑥 · 𝑒) = ( 1 · 𝑒))
4443, 41eqeq12d 2749 . . . . . . . . . . . . 13 (𝑥 = 1 → ((𝑥 · 𝑒) = 𝑥 ↔ ( 1 · 𝑒) = 1 ))
4542, 44anbi12d 632 . . . . . . . . . . . 12 (𝑥 = 1 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 )))
4645rspcva 3571 . . . . . . . . . . 11 (( 1𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 ))
4746simprd 495 . . . . . . . . . 10 (( 1𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ( 1 · 𝑒) = 1 )
4838, 39, 47syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 1 )
4937, 48eqtr3d 2770 . . . . . . . 8 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 𝑒 = 1 )
5049ex 412 . . . . . . 7 (𝜑 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → 𝑒 = 1 ))
5128, 50sylbird 260 . . . . . 6 (𝜑 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 ))
5251alrimiv 1928 . . . . 5 (𝜑 → ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 ))
53 eleq1 2821 . . . . . . 7 (𝑒 = 1 → (𝑒 ∈ (Base‘𝑅) ↔ 1 ∈ (Base‘𝑅)))
54 oveq1 7359 . . . . . . . . 9 (𝑒 = 1 → (𝑒(.r𝑅)𝑥) = ( 1 (.r𝑅)𝑥))
5554eqeq1d 2735 . . . . . . . 8 (𝑒 = 1 → ((𝑒(.r𝑅)𝑥) = 𝑥 ↔ ( 1 (.r𝑅)𝑥) = 𝑥))
5655ovanraleqv 7376 . . . . . . 7 (𝑒 = 1 → (∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
5753, 56anbi12d 632 . . . . . 6 (𝑒 = 1 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) ↔ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥))))
5857eqeu 3661 . . . . 5 (( 1 ∈ (Base‘𝑅) ∧ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ∧ ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 )) → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
597, 7, 20, 52, 58syl121anc 1377 . . . 4 (𝜑 → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
6057iota2 6475 . . . 4 (( 1𝐵 ∧ ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 ))
615, 59, 60syl2anc 584 . . 3 (𝜑 → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 ))
627, 20, 61mpbi2and 712 . 2 (𝜑 → (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 )
634, 62eqtr2id 2781 1 (𝜑1 = (1r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  ∃!weu 2565  wral 3048  cio 6440  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  1rcur 20101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-mgp 20061  df-ur 20102
This theorem is referenced by:  rngisomring1  20388  ress1r  33208
  Copyright terms: Public domain W3C validator