![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erexb | Structured version Visualization version GIF version |
Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erexb | ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7890 | . . 3 ⊢ (𝑅 ∈ V → dom 𝑅 ∈ V) | |
2 | erdm 8709 | . . . 4 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
3 | 2 | eleq1d 2818 | . . 3 ⊢ (𝑅 Er 𝐴 → (dom 𝑅 ∈ V ↔ 𝐴 ∈ V)) |
4 | 1, 3 | imbitrid 243 | . 2 ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V → 𝐴 ∈ V)) |
5 | erex 8723 | . 2 ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ V → 𝑅 ∈ V)) | |
6 | 4, 5 | impbid 211 | 1 ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3474 dom cdm 5675 Er wer 8696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 df-er 8699 |
This theorem is referenced by: prtex 37738 |
Copyright terms: Public domain | W3C validator |