MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erexb Structured version   Visualization version   GIF version

Theorem erexb 8512
Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erexb (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V))

Proof of Theorem erexb
StepHypRef Expression
1 dmexg 7742 . . 3 (𝑅 ∈ V → dom 𝑅 ∈ V)
2 erdm 8497 . . . 4 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
32eleq1d 2823 . . 3 (𝑅 Er 𝐴 → (dom 𝑅 ∈ V ↔ 𝐴 ∈ V))
41, 3syl5ib 243 . 2 (𝑅 Er 𝐴 → (𝑅 ∈ V → 𝐴 ∈ V))
5 erex 8511 . 2 (𝑅 Er 𝐴 → (𝐴 ∈ V → 𝑅 ∈ V))
64, 5impbid 211 1 (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  Vcvv 3431  dom cdm 5586   Er wer 8484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5076  df-opab 5138  df-xp 5592  df-rel 5593  df-cnv 5594  df-dm 5596  df-rn 5597  df-er 8487
This theorem is referenced by:  prtex  36881
  Copyright terms: Public domain W3C validator