MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erexb Structured version   Visualization version   GIF version

Theorem erexb 8696
Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erexb (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V))

Proof of Theorem erexb
StepHypRef Expression
1 dmexg 7877 . . 3 (𝑅 ∈ V → dom 𝑅 ∈ V)
2 erdm 8681 . . . 4 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
32eleq1d 2813 . . 3 (𝑅 Er 𝐴 → (dom 𝑅 ∈ V ↔ 𝐴 ∈ V))
41, 3imbitrid 244 . 2 (𝑅 Er 𝐴 → (𝑅 ∈ V → 𝐴 ∈ V))
5 erex 8695 . 2 (𝑅 Er 𝐴 → (𝐴 ∈ V → 𝑅 ∈ V))
64, 5impbid 212 1 (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3447  dom cdm 5638   Er wer 8668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-er 8671
This theorem is referenced by:  prtex  38873
  Copyright terms: Public domain W3C validator