| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erexb | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erexb | ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7831 | . . 3 ⊢ (𝑅 ∈ V → dom 𝑅 ∈ V) | |
| 2 | erdm 8632 | . . . 4 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
| 3 | 2 | eleq1d 2816 | . . 3 ⊢ (𝑅 Er 𝐴 → (dom 𝑅 ∈ V ↔ 𝐴 ∈ V)) |
| 4 | 1, 3 | imbitrid 244 | . 2 ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V → 𝐴 ∈ V)) |
| 5 | erex 8646 | . 2 ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ V → 𝑅 ∈ V)) | |
| 6 | 4, 5 | impbid 212 | 1 ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 dom cdm 5616 Er wer 8619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-er 8622 |
| This theorem is referenced by: prtex 38918 |
| Copyright terms: Public domain | W3C validator |