Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erexb | Structured version Visualization version GIF version |
Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erexb | ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7742 | . . 3 ⊢ (𝑅 ∈ V → dom 𝑅 ∈ V) | |
2 | erdm 8497 | . . . 4 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
3 | 2 | eleq1d 2823 | . . 3 ⊢ (𝑅 Er 𝐴 → (dom 𝑅 ∈ V ↔ 𝐴 ∈ V)) |
4 | 1, 3 | syl5ib 243 | . 2 ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V → 𝐴 ∈ V)) |
5 | erex 8511 | . 2 ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ V → 𝑅 ∈ V)) | |
6 | 4, 5 | impbid 211 | 1 ⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3431 dom cdm 5586 Er wer 8484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-xp 5592 df-rel 5593 df-cnv 5594 df-dm 5596 df-rn 5597 df-er 8487 |
This theorem is referenced by: prtex 36881 |
Copyright terms: Public domain | W3C validator |