MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem3 Structured version   Visualization version   GIF version

Theorem sylow1lem3 19633
Description: Lemma for sylow1 19636. One of the orbits of the group action has p-adic valuation less than the prime count of the set 𝑆. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow1lem3 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Distinct variable groups:   𝑔,𝑠,𝑥,𝑦,𝑧,𝑤   𝑆,𝑔   𝑥,𝑤,𝑦,𝑧,𝑆   𝑔,𝑁   𝑤,𝑠,𝑁,𝑥,𝑦,𝑧   𝑔,𝑋,𝑠,𝑤,𝑥,𝑦,𝑧   + ,𝑠,𝑤,𝑥,𝑦,𝑧   𝑤, ,𝑧   ,𝑔,𝑤,𝑥,𝑦,𝑧   𝑔,𝐺,𝑠,𝑥,𝑦,𝑧   𝑃,𝑔,𝑠,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑔,𝑠)   + (𝑔)   (𝑠)   (𝑥,𝑦,𝑔,𝑠)   𝑆(𝑠)   𝐺(𝑤)

Proof of Theorem sylow1lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sylow1.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
2 sylow1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 sylow1.g . . . . . . . 8 (𝜑𝐺 ∈ Grp)
4 sylow1.f . . . . . . . 8 (𝜑𝑋 ∈ Fin)
5 sylow1.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . . . . . 8 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 sylow1lem.a . . . . . . . 8 + = (+g𝐺)
8 sylow1lem.s . . . . . . . 8 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
92, 3, 4, 1, 5, 6, 7, 8sylow1lem1 19631 . . . . . . 7 (𝜑 → ((♯‘𝑆) ∈ ℕ ∧ (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
109simpld 494 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ ℕ)
11 pcndvds 16900 . . . . . 6 ((𝑃 ∈ ℙ ∧ (♯‘𝑆) ∈ ℕ) → ¬ (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆))
121, 10, 11syl2anc 584 . . . . 5 (𝜑 → ¬ (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆))
139simprd 495 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
1413oveq1d 7446 . . . . . . 7 (𝜑 → ((𝑃 pCnt (♯‘𝑆)) + 1) = (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1))
1514oveq2d 7447 . . . . . 6 (𝜑 → (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) = (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)))
16 sylow1lem.m . . . . . . . . 9 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
172, 3, 4, 1, 5, 6, 7, 8, 16sylow1lem2 19632 . . . . . . . 8 (𝜑 ∈ (𝐺 GrpAct 𝑆))
18 sylow1lem3.1 . . . . . . . . 9 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
1918, 2gaorber 19339 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
2017, 19syl 17 . . . . . . 7 (𝜑 Er 𝑆)
21 pwfi 9355 . . . . . . . . 9 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
224, 21sylib 218 . . . . . . . 8 (𝜑 → 𝒫 𝑋 ∈ Fin)
238ssrab3 4092 . . . . . . . 8 𝑆 ⊆ 𝒫 𝑋
24 ssfi 9212 . . . . . . . 8 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2522, 23, 24sylancl 586 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2620, 25qshash 15860 . . . . . 6 (𝜑 → (♯‘𝑆) = Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
2715, 26breq12d 5161 . . . . 5 (𝜑 → ((𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧)))
2812, 27mtbid 324 . . . 4 (𝜑 → ¬ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
29 pwfi 9355 . . . . . . . 8 (𝑆 ∈ Fin ↔ 𝒫 𝑆 ∈ Fin)
3025, 29sylib 218 . . . . . . 7 (𝜑 → 𝒫 𝑆 ∈ Fin)
3120qsss 8817 . . . . . . 7 (𝜑 → (𝑆 / ) ⊆ 𝒫 𝑆)
3230, 31ssfid 9299 . . . . . 6 (𝜑 → (𝑆 / ) ∈ Fin)
3332adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑆 / ) ∈ Fin)
34 prmnn 16708 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
351, 34syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
361, 10pccld 16884 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝑆)) ∈ ℕ0)
3713, 36eqeltrrd 2840 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℕ0)
38 peano2nn0 12564 . . . . . . . . 9 (((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℕ0 → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
3937, 38syl 17 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
4035, 39nnexpcld 14281 . . . . . . 7 (𝜑 → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℕ)
4140nnzd 12638 . . . . . 6 (𝜑 → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
4241adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
43 erdm 8754 . . . . . . . . . 10 ( Er 𝑆 → dom = 𝑆)
4420, 43syl 17 . . . . . . . . 9 (𝜑 → dom = 𝑆)
45 elqsn0 8825 . . . . . . . . 9 ((dom = 𝑆𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4644, 45sylan 580 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4725adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑆 ∈ Fin)
4831sselda 3995 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ 𝒫 𝑆)
4948elpwid 4614 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧𝑆)
5047, 49ssfid 9299 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ Fin)
51 hashnncl 14402 . . . . . . . . 9 (𝑧 ∈ Fin → ((♯‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5250, 51syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → ((♯‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5346, 52mpbird 257 . . . . . . 7 ((𝜑𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℕ)
5453adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℕ)
5554nnzd 12638 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℤ)
56 fveq2 6907 . . . . . . . . . . . . 13 (𝑎 = 𝑧 → (♯‘𝑎) = (♯‘𝑧))
5756oveq2d 7447 . . . . . . . . . . . 12 (𝑎 = 𝑧 → (𝑃 pCnt (♯‘𝑎)) = (𝑃 pCnt (♯‘𝑧)))
5857breq1d 5158 . . . . . . . . . . 11 (𝑎 = 𝑧 → ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
5958notbid 318 . . . . . . . . . 10 (𝑎 = 𝑧 → (¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
6059rspccva 3621 . . . . . . . . 9 ((∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
6160adantll 714 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
622grpbn0 18997 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
633, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ≠ ∅)
64 hashnncl 14402 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
654, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
6663, 65mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑋) ∈ ℕ)
671, 66pccld 16884 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
6867nn0zd 12637 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
695nn0zd 12637 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
7068, 69zsubcld 12725 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ)
7170ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ)
7271zred 12720 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℝ)
731ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → 𝑃 ∈ ℙ)
7473, 54pccld 16884 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℕ0)
7574nn0zd 12637 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℤ)
7675zred 12720 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℝ)
7772, 76ltnled 11406 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
7861, 77mpbird 257 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)))
79 zltp1le 12665 . . . . . . . 8 ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑧)) ∈ ℤ) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧))))
8071, 75, 79syl2anc 584 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧))))
8178, 80mpbid 232 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)))
8239ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
83 pcdvdsb 16903 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝑧) ∈ ℤ ∧ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0) → ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧)))
8473, 55, 82, 83syl3anc 1370 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧)))
8581, 84mpbid 232 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧))
8633, 42, 55, 85fsumdvds 16342 . . . 4 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
8728, 86mtand 816 . . 3 (𝜑 → ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
88 dfrex2 3071 . . 3 (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
8987, 88sylibr 234 . 2 (𝜑 → ∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
90 eqid 2735 . . . 4 (𝑆 / ) = (𝑆 / )
91 fveq2 6907 . . . . . . 7 ([𝑧] = 𝑎 → (♯‘[𝑧] ) = (♯‘𝑎))
9291oveq2d 7447 . . . . . 6 ([𝑧] = 𝑎 → (𝑃 pCnt (♯‘[𝑧] )) = (𝑃 pCnt (♯‘𝑎)))
9392breq1d 5158 . . . . 5 ([𝑧] = 𝑎 → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
9493imbi1d 341 . . . 4 ([𝑧] = 𝑎 → (((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ↔ ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))))
95 eceq1 8783 . . . . . . . . . 10 (𝑤 = 𝑧 → [𝑤] = [𝑧] )
9695fveq2d 6911 . . . . . . . . 9 (𝑤 = 𝑧 → (♯‘[𝑤] ) = (♯‘[𝑧] ))
9796oveq2d 7447 . . . . . . . 8 (𝑤 = 𝑧 → (𝑃 pCnt (♯‘[𝑤] )) = (𝑃 pCnt (♯‘[𝑧] )))
9897breq1d 5158 . . . . . . 7 (𝑤 = 𝑧 → ((𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
9998rspcev 3622 . . . . . 6 ((𝑧𝑆 ∧ (𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
10099ex 412 . . . . 5 (𝑧𝑆 → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
101100adantl 481 . . . 4 ((𝜑𝑧𝑆) → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
10290, 94, 101ectocld 8823 . . 3 ((𝜑𝑎 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
103102rexlimdva 3153 . 2 (𝜑 → (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
10489, 103mpd 15 1 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  wss 3963  c0 4339  𝒫 cpw 4605  {cpr 4633   class class class wbr 5148  {copab 5210  cmpt 5231  dom cdm 5689  ran crn 5690  cfv 6563  (class class class)co 7431  cmpo 7433   Er wer 8741  [cec 8742   / cqs 8743  Fincfn 8984  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  0cn0 12524  cz 12611  cexp 14099  chash 14366  Σcsu 15719  cdvds 16287  cprime 16705   pCnt cpc 16870  Basecbs 17245  +gcplusg 17298  Grpcgrp 18964   GrpAct cga 19320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-ga 19321
This theorem is referenced by:  sylow1  19636
  Copyright terms: Public domain W3C validator