MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem3 Structured version   Visualization version   GIF version

Theorem sylow1lem3 19462
Description: Lemma for sylow1 19465. One of the orbits of the group action has p-adic valuation less than the prime count of the set 𝑆. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow1lem3 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Distinct variable groups:   𝑔,𝑠,𝑥,𝑦,𝑧,𝑤   𝑆,𝑔   𝑥,𝑤,𝑦,𝑧,𝑆   𝑔,𝑁   𝑤,𝑠,𝑁,𝑥,𝑦,𝑧   𝑔,𝑋,𝑠,𝑤,𝑥,𝑦,𝑧   + ,𝑠,𝑤,𝑥,𝑦,𝑧   𝑤, ,𝑧   ,𝑔,𝑤,𝑥,𝑦,𝑧   𝑔,𝐺,𝑠,𝑥,𝑦,𝑧   𝑃,𝑔,𝑠,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑔,𝑠)   + (𝑔)   (𝑠)   (𝑥,𝑦,𝑔,𝑠)   𝑆(𝑠)   𝐺(𝑤)

Proof of Theorem sylow1lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sylow1.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
2 sylow1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 sylow1.g . . . . . . . 8 (𝜑𝐺 ∈ Grp)
4 sylow1.f . . . . . . . 8 (𝜑𝑋 ∈ Fin)
5 sylow1.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . . . . . 8 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 sylow1lem.a . . . . . . . 8 + = (+g𝐺)
8 sylow1lem.s . . . . . . . 8 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
92, 3, 4, 1, 5, 6, 7, 8sylow1lem1 19460 . . . . . . 7 (𝜑 → ((♯‘𝑆) ∈ ℕ ∧ (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
109simpld 495 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ ℕ)
11 pcndvds 16795 . . . . . 6 ((𝑃 ∈ ℙ ∧ (♯‘𝑆) ∈ ℕ) → ¬ (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆))
121, 10, 11syl2anc 584 . . . . 5 (𝜑 → ¬ (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆))
139simprd 496 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
1413oveq1d 7420 . . . . . . 7 (𝜑 → ((𝑃 pCnt (♯‘𝑆)) + 1) = (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1))
1514oveq2d 7421 . . . . . 6 (𝜑 → (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) = (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)))
16 sylow1lem.m . . . . . . . . 9 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
172, 3, 4, 1, 5, 6, 7, 8, 16sylow1lem2 19461 . . . . . . . 8 (𝜑 ∈ (𝐺 GrpAct 𝑆))
18 sylow1lem3.1 . . . . . . . . 9 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
1918, 2gaorber 19166 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
2017, 19syl 17 . . . . . . 7 (𝜑 Er 𝑆)
21 pwfi 9174 . . . . . . . . 9 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
224, 21sylib 217 . . . . . . . 8 (𝜑 → 𝒫 𝑋 ∈ Fin)
238ssrab3 4079 . . . . . . . 8 𝑆 ⊆ 𝒫 𝑋
24 ssfi 9169 . . . . . . . 8 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2522, 23, 24sylancl 586 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2620, 25qshash 15769 . . . . . 6 (𝜑 → (♯‘𝑆) = Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
2715, 26breq12d 5160 . . . . 5 (𝜑 → ((𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧)))
2812, 27mtbid 323 . . . 4 (𝜑 → ¬ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
29 pwfi 9174 . . . . . . . 8 (𝑆 ∈ Fin ↔ 𝒫 𝑆 ∈ Fin)
3025, 29sylib 217 . . . . . . 7 (𝜑 → 𝒫 𝑆 ∈ Fin)
3120qsss 8768 . . . . . . 7 (𝜑 → (𝑆 / ) ⊆ 𝒫 𝑆)
3230, 31ssfid 9263 . . . . . 6 (𝜑 → (𝑆 / ) ∈ Fin)
3332adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑆 / ) ∈ Fin)
34 prmnn 16607 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
351, 34syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
361, 10pccld 16779 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝑆)) ∈ ℕ0)
3713, 36eqeltrrd 2834 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℕ0)
38 peano2nn0 12508 . . . . . . . . 9 (((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℕ0 → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
3937, 38syl 17 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
4035, 39nnexpcld 14204 . . . . . . 7 (𝜑 → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℕ)
4140nnzd 12581 . . . . . 6 (𝜑 → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
4241adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
43 erdm 8709 . . . . . . . . . 10 ( Er 𝑆 → dom = 𝑆)
4420, 43syl 17 . . . . . . . . 9 (𝜑 → dom = 𝑆)
45 elqsn0 8776 . . . . . . . . 9 ((dom = 𝑆𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4644, 45sylan 580 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4725adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑆 ∈ Fin)
4831sselda 3981 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ 𝒫 𝑆)
4948elpwid 4610 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧𝑆)
5047, 49ssfid 9263 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ Fin)
51 hashnncl 14322 . . . . . . . . 9 (𝑧 ∈ Fin → ((♯‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5250, 51syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → ((♯‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5346, 52mpbird 256 . . . . . . 7 ((𝜑𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℕ)
5453adantlr 713 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℕ)
5554nnzd 12581 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℤ)
56 fveq2 6888 . . . . . . . . . . . . 13 (𝑎 = 𝑧 → (♯‘𝑎) = (♯‘𝑧))
5756oveq2d 7421 . . . . . . . . . . . 12 (𝑎 = 𝑧 → (𝑃 pCnt (♯‘𝑎)) = (𝑃 pCnt (♯‘𝑧)))
5857breq1d 5157 . . . . . . . . . . 11 (𝑎 = 𝑧 → ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
5958notbid 317 . . . . . . . . . 10 (𝑎 = 𝑧 → (¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
6059rspccva 3611 . . . . . . . . 9 ((∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
6160adantll 712 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
622grpbn0 18847 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
633, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ≠ ∅)
64 hashnncl 14322 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
654, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
6663, 65mpbird 256 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑋) ∈ ℕ)
671, 66pccld 16779 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
6867nn0zd 12580 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
695nn0zd 12580 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
7068, 69zsubcld 12667 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ)
7170ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ)
7271zred 12662 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℝ)
731ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → 𝑃 ∈ ℙ)
7473, 54pccld 16779 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℕ0)
7574nn0zd 12580 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℤ)
7675zred 12662 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℝ)
7772, 76ltnled 11357 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
7861, 77mpbird 256 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)))
79 zltp1le 12608 . . . . . . . 8 ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑧)) ∈ ℤ) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧))))
8071, 75, 79syl2anc 584 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧))))
8178, 80mpbid 231 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)))
8239ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
83 pcdvdsb 16798 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝑧) ∈ ℤ ∧ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0) → ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧)))
8473, 55, 82, 83syl3anc 1371 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧)))
8581, 84mpbid 231 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧))
8633, 42, 55, 85fsumdvds 16247 . . . 4 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
8728, 86mtand 814 . . 3 (𝜑 → ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
88 dfrex2 3073 . . 3 (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
8987, 88sylibr 233 . 2 (𝜑 → ∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
90 eqid 2732 . . . 4 (𝑆 / ) = (𝑆 / )
91 fveq2 6888 . . . . . . 7 ([𝑧] = 𝑎 → (♯‘[𝑧] ) = (♯‘𝑎))
9291oveq2d 7421 . . . . . 6 ([𝑧] = 𝑎 → (𝑃 pCnt (♯‘[𝑧] )) = (𝑃 pCnt (♯‘𝑎)))
9392breq1d 5157 . . . . 5 ([𝑧] = 𝑎 → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
9493imbi1d 341 . . . 4 ([𝑧] = 𝑎 → (((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ↔ ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))))
95 eceq1 8737 . . . . . . . . . 10 (𝑤 = 𝑧 → [𝑤] = [𝑧] )
9695fveq2d 6892 . . . . . . . . 9 (𝑤 = 𝑧 → (♯‘[𝑤] ) = (♯‘[𝑧] ))
9796oveq2d 7421 . . . . . . . 8 (𝑤 = 𝑧 → (𝑃 pCnt (♯‘[𝑤] )) = (𝑃 pCnt (♯‘[𝑧] )))
9897breq1d 5157 . . . . . . 7 (𝑤 = 𝑧 → ((𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
9998rspcev 3612 . . . . . 6 ((𝑧𝑆 ∧ (𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
10099ex 413 . . . . 5 (𝑧𝑆 → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
101100adantl 482 . . . 4 ((𝜑𝑧𝑆) → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
10290, 94, 101ectocld 8774 . . 3 ((𝜑𝑎 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
103102rexlimdva 3155 . 2 (𝜑 → (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
10489, 103mpd 15 1 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  {crab 3432  wss 3947  c0 4321  𝒫 cpw 4601  {cpr 4629   class class class wbr 5147  {copab 5209  cmpt 5230  dom cdm 5675  ran crn 5676  cfv 6540  (class class class)co 7405  cmpo 7407   Er wer 8696  [cec 8697   / cqs 8698  Fincfn 8935  1c1 11107   + caddc 11109   < clt 11244  cle 11245  cmin 11440  cn 12208  0cn0 12468  cz 12554  cexp 14023  chash 14286  Σcsu 15628  cdvds 16193  cprime 16604   pCnt cpc 16765  Basecbs 17140  +gcplusg 17193  Grpcgrp 18815   GrpAct cga 19147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-ga 19148
This theorem is referenced by:  sylow1  19465
  Copyright terms: Public domain W3C validator