MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem3 Structured version   Visualization version   GIF version

Theorem sylow1lem3 19120
Description: Lemma for sylow1 19123. One of the orbits of the group action has p-adic valuation less than the prime count of the set 𝑆. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow1lem3 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Distinct variable groups:   𝑔,𝑠,𝑥,𝑦,𝑧,𝑤   𝑆,𝑔   𝑥,𝑤,𝑦,𝑧,𝑆   𝑔,𝑁   𝑤,𝑠,𝑁,𝑥,𝑦,𝑧   𝑔,𝑋,𝑠,𝑤,𝑥,𝑦,𝑧   + ,𝑠,𝑤,𝑥,𝑦,𝑧   𝑤, ,𝑧   ,𝑔,𝑤,𝑥,𝑦,𝑧   𝑔,𝐺,𝑠,𝑥,𝑦,𝑧   𝑃,𝑔,𝑠,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑔,𝑠)   + (𝑔)   (𝑠)   (𝑥,𝑦,𝑔,𝑠)   𝑆(𝑠)   𝐺(𝑤)

Proof of Theorem sylow1lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sylow1.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
2 sylow1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 sylow1.g . . . . . . . 8 (𝜑𝐺 ∈ Grp)
4 sylow1.f . . . . . . . 8 (𝜑𝑋 ∈ Fin)
5 sylow1.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . . . . . 8 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 sylow1lem.a . . . . . . . 8 + = (+g𝐺)
8 sylow1lem.s . . . . . . . 8 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
92, 3, 4, 1, 5, 6, 7, 8sylow1lem1 19118 . . . . . . 7 (𝜑 → ((♯‘𝑆) ∈ ℕ ∧ (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
109simpld 494 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ ℕ)
11 pcndvds 16495 . . . . . 6 ((𝑃 ∈ ℙ ∧ (♯‘𝑆) ∈ ℕ) → ¬ (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆))
121, 10, 11syl2anc 583 . . . . 5 (𝜑 → ¬ (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆))
139simprd 495 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
1413oveq1d 7270 . . . . . . 7 (𝜑 → ((𝑃 pCnt (♯‘𝑆)) + 1) = (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1))
1514oveq2d 7271 . . . . . 6 (𝜑 → (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) = (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)))
16 sylow1lem.m . . . . . . . . 9 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
172, 3, 4, 1, 5, 6, 7, 8, 16sylow1lem2 19119 . . . . . . . 8 (𝜑 ∈ (𝐺 GrpAct 𝑆))
18 sylow1lem3.1 . . . . . . . . 9 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
1918, 2gaorber 18829 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
2017, 19syl 17 . . . . . . 7 (𝜑 Er 𝑆)
21 pwfi 8923 . . . . . . . . 9 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
224, 21sylib 217 . . . . . . . 8 (𝜑 → 𝒫 𝑋 ∈ Fin)
238ssrab3 4011 . . . . . . . 8 𝑆 ⊆ 𝒫 𝑋
24 ssfi 8918 . . . . . . . 8 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2522, 23, 24sylancl 585 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2620, 25qshash 15467 . . . . . 6 (𝜑 → (♯‘𝑆) = Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
2715, 26breq12d 5083 . . . . 5 (𝜑 → ((𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧)))
2812, 27mtbid 323 . . . 4 (𝜑 → ¬ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
29 pwfi 8923 . . . . . . . 8 (𝑆 ∈ Fin ↔ 𝒫 𝑆 ∈ Fin)
3025, 29sylib 217 . . . . . . 7 (𝜑 → 𝒫 𝑆 ∈ Fin)
3120qsss 8525 . . . . . . 7 (𝜑 → (𝑆 / ) ⊆ 𝒫 𝑆)
3230, 31ssfid 8971 . . . . . 6 (𝜑 → (𝑆 / ) ∈ Fin)
3332adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑆 / ) ∈ Fin)
34 prmnn 16307 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
351, 34syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
361, 10pccld 16479 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝑆)) ∈ ℕ0)
3713, 36eqeltrrd 2840 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℕ0)
38 peano2nn0 12203 . . . . . . . . 9 (((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℕ0 → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
3937, 38syl 17 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
4035, 39nnexpcld 13888 . . . . . . 7 (𝜑 → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℕ)
4140nnzd 12354 . . . . . 6 (𝜑 → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
4241adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
43 erdm 8466 . . . . . . . . . 10 ( Er 𝑆 → dom = 𝑆)
4420, 43syl 17 . . . . . . . . 9 (𝜑 → dom = 𝑆)
45 elqsn0 8533 . . . . . . . . 9 ((dom = 𝑆𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4644, 45sylan 579 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4725adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑆 ∈ Fin)
4831sselda 3917 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ 𝒫 𝑆)
4948elpwid 4541 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧𝑆)
5047, 49ssfid 8971 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ Fin)
51 hashnncl 14009 . . . . . . . . 9 (𝑧 ∈ Fin → ((♯‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5250, 51syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → ((♯‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5346, 52mpbird 256 . . . . . . 7 ((𝜑𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℕ)
5453adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℕ)
5554nnzd 12354 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℤ)
56 fveq2 6756 . . . . . . . . . . . . 13 (𝑎 = 𝑧 → (♯‘𝑎) = (♯‘𝑧))
5756oveq2d 7271 . . . . . . . . . . . 12 (𝑎 = 𝑧 → (𝑃 pCnt (♯‘𝑎)) = (𝑃 pCnt (♯‘𝑧)))
5857breq1d 5080 . . . . . . . . . . 11 (𝑎 = 𝑧 → ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
5958notbid 317 . . . . . . . . . 10 (𝑎 = 𝑧 → (¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
6059rspccva 3551 . . . . . . . . 9 ((∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
6160adantll 710 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
622grpbn0 18523 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
633, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ≠ ∅)
64 hashnncl 14009 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
654, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
6663, 65mpbird 256 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑋) ∈ ℕ)
671, 66pccld 16479 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
6867nn0zd 12353 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
695nn0zd 12353 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
7068, 69zsubcld 12360 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ)
7170ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ)
7271zred 12355 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℝ)
731ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → 𝑃 ∈ ℙ)
7473, 54pccld 16479 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℕ0)
7574nn0zd 12353 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℤ)
7675zred 12355 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℝ)
7772, 76ltnled 11052 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
7861, 77mpbird 256 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)))
79 zltp1le 12300 . . . . . . . 8 ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑧)) ∈ ℤ) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧))))
8071, 75, 79syl2anc 583 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧))))
8178, 80mpbid 231 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)))
8239ad2antrr 722 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
83 pcdvdsb 16498 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝑧) ∈ ℤ ∧ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0) → ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧)))
8473, 55, 82, 83syl3anc 1369 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧)))
8581, 84mpbid 231 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧))
8633, 42, 55, 85fsumdvds 15945 . . . 4 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
8728, 86mtand 812 . . 3 (𝜑 → ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
88 dfrex2 3166 . . 3 (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
8987, 88sylibr 233 . 2 (𝜑 → ∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
90 eqid 2738 . . . 4 (𝑆 / ) = (𝑆 / )
91 fveq2 6756 . . . . . . 7 ([𝑧] = 𝑎 → (♯‘[𝑧] ) = (♯‘𝑎))
9291oveq2d 7271 . . . . . 6 ([𝑧] = 𝑎 → (𝑃 pCnt (♯‘[𝑧] )) = (𝑃 pCnt (♯‘𝑎)))
9392breq1d 5080 . . . . 5 ([𝑧] = 𝑎 → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
9493imbi1d 341 . . . 4 ([𝑧] = 𝑎 → (((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ↔ ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))))
95 eceq1 8494 . . . . . . . . . 10 (𝑤 = 𝑧 → [𝑤] = [𝑧] )
9695fveq2d 6760 . . . . . . . . 9 (𝑤 = 𝑧 → (♯‘[𝑤] ) = (♯‘[𝑧] ))
9796oveq2d 7271 . . . . . . . 8 (𝑤 = 𝑧 → (𝑃 pCnt (♯‘[𝑤] )) = (𝑃 pCnt (♯‘[𝑧] )))
9897breq1d 5080 . . . . . . 7 (𝑤 = 𝑧 → ((𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
9998rspcev 3552 . . . . . 6 ((𝑧𝑆 ∧ (𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
10099ex 412 . . . . 5 (𝑧𝑆 → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
101100adantl 481 . . . 4 ((𝜑𝑧𝑆) → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
10290, 94, 101ectocld 8531 . . 3 ((𝜑𝑎 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
103102rexlimdva 3212 . 2 (𝜑 → (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
10489, 103mpd 15 1 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  wss 3883  c0 4253  𝒫 cpw 4530  {cpr 4560   class class class wbr 5070  {copab 5132  cmpt 5153  dom cdm 5580  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257   Er wer 8453  [cec 8454   / cqs 8455  Fincfn 8691  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249  cexp 13710  chash 13972  Σcsu 15325  cdvds 15891  cprime 16304   pCnt cpc 16465  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492   GrpAct cga 18810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-ga 18811
This theorem is referenced by:  sylow1  19123
  Copyright terms: Public domain W3C validator