MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem3 Structured version   Visualization version   GIF version

Theorem sylow1lem3 18961
Description: Lemma for sylow1 18964. One of the orbits of the group action has p-adic valuation less than the prime count of the set 𝑆. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow1lem3 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Distinct variable groups:   𝑔,𝑠,𝑥,𝑦,𝑧,𝑤   𝑆,𝑔   𝑥,𝑤,𝑦,𝑧,𝑆   𝑔,𝑁   𝑤,𝑠,𝑁,𝑥,𝑦,𝑧   𝑔,𝑋,𝑠,𝑤,𝑥,𝑦,𝑧   + ,𝑠,𝑤,𝑥,𝑦,𝑧   𝑤, ,𝑧   ,𝑔,𝑤,𝑥,𝑦,𝑧   𝑔,𝐺,𝑠,𝑥,𝑦,𝑧   𝑃,𝑔,𝑠,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑔,𝑠)   + (𝑔)   (𝑠)   (𝑥,𝑦,𝑔,𝑠)   𝑆(𝑠)   𝐺(𝑤)

Proof of Theorem sylow1lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sylow1.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
2 sylow1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 sylow1.g . . . . . . . 8 (𝜑𝐺 ∈ Grp)
4 sylow1.f . . . . . . . 8 (𝜑𝑋 ∈ Fin)
5 sylow1.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . . . . . 8 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 sylow1lem.a . . . . . . . 8 + = (+g𝐺)
8 sylow1lem.s . . . . . . . 8 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
92, 3, 4, 1, 5, 6, 7, 8sylow1lem1 18959 . . . . . . 7 (𝜑 → ((♯‘𝑆) ∈ ℕ ∧ (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
109simpld 498 . . . . . 6 (𝜑 → (♯‘𝑆) ∈ ℕ)
11 pcndvds 16400 . . . . . 6 ((𝑃 ∈ ℙ ∧ (♯‘𝑆) ∈ ℕ) → ¬ (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆))
121, 10, 11syl2anc 587 . . . . 5 (𝜑 → ¬ (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆))
139simprd 499 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
1413oveq1d 7217 . . . . . . 7 (𝜑 → ((𝑃 pCnt (♯‘𝑆)) + 1) = (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1))
1514oveq2d 7218 . . . . . 6 (𝜑 → (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) = (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)))
16 sylow1lem.m . . . . . . . . 9 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
172, 3, 4, 1, 5, 6, 7, 8, 16sylow1lem2 18960 . . . . . . . 8 (𝜑 ∈ (𝐺 GrpAct 𝑆))
18 sylow1lem3.1 . . . . . . . . 9 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
1918, 2gaorber 18674 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
2017, 19syl 17 . . . . . . 7 (𝜑 Er 𝑆)
21 pwfi 8845 . . . . . . . . 9 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
224, 21sylib 221 . . . . . . . 8 (𝜑 → 𝒫 𝑋 ∈ Fin)
238ssrab3 3985 . . . . . . . 8 𝑆 ⊆ 𝒫 𝑋
24 ssfi 8840 . . . . . . . 8 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2522, 23, 24sylancl 589 . . . . . . 7 (𝜑𝑆 ∈ Fin)
2620, 25qshash 15372 . . . . . 6 (𝜑 → (♯‘𝑆) = Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
2715, 26breq12d 5056 . . . . 5 (𝜑 → ((𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧)))
2812, 27mtbid 327 . . . 4 (𝜑 → ¬ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
29 pwfi 8845 . . . . . . . 8 (𝑆 ∈ Fin ↔ 𝒫 𝑆 ∈ Fin)
3025, 29sylib 221 . . . . . . 7 (𝜑 → 𝒫 𝑆 ∈ Fin)
3120qsss 8449 . . . . . . 7 (𝜑 → (𝑆 / ) ⊆ 𝒫 𝑆)
3230, 31ssfid 8887 . . . . . 6 (𝜑 → (𝑆 / ) ∈ Fin)
3332adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑆 / ) ∈ Fin)
34 prmnn 16212 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
351, 34syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
361, 10pccld 16384 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝑆)) ∈ ℕ0)
3713, 36eqeltrrd 2835 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℕ0)
38 peano2nn0 12113 . . . . . . . . 9 (((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℕ0 → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
3937, 38syl 17 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
4035, 39nnexpcld 13795 . . . . . . 7 (𝜑 → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℕ)
4140nnzd 12264 . . . . . 6 (𝜑 → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
4241adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℤ)
43 erdm 8390 . . . . . . . . . 10 ( Er 𝑆 → dom = 𝑆)
4420, 43syl 17 . . . . . . . . 9 (𝜑 → dom = 𝑆)
45 elqsn0 8457 . . . . . . . . 9 ((dom = 𝑆𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4644, 45sylan 583 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ≠ ∅)
4725adantr 484 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑆 ∈ Fin)
4831sselda 3891 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ 𝒫 𝑆)
4948elpwid 4514 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧𝑆)
5047, 49ssfid 8887 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑆 / )) → 𝑧 ∈ Fin)
51 hashnncl 13916 . . . . . . . . 9 (𝑧 ∈ Fin → ((♯‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5250, 51syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑆 / )) → ((♯‘𝑧) ∈ ℕ ↔ 𝑧 ≠ ∅))
5346, 52mpbird 260 . . . . . . 7 ((𝜑𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℕ)
5453adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℕ)
5554nnzd 12264 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (♯‘𝑧) ∈ ℤ)
56 fveq2 6706 . . . . . . . . . . . . 13 (𝑎 = 𝑧 → (♯‘𝑎) = (♯‘𝑧))
5756oveq2d 7218 . . . . . . . . . . . 12 (𝑎 = 𝑧 → (𝑃 pCnt (♯‘𝑎)) = (𝑃 pCnt (♯‘𝑧)))
5857breq1d 5053 . . . . . . . . . . 11 (𝑎 = 𝑧 → ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
5958notbid 321 . . . . . . . . . 10 (𝑎 = 𝑧 → (¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
6059rspccva 3529 . . . . . . . . 9 ((∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
6160adantll 714 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
622grpbn0 18368 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
633, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 ≠ ∅)
64 hashnncl 13916 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
654, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
6663, 65mpbird 260 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑋) ∈ ℕ)
671, 66pccld 16384 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
6867nn0zd 12263 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
695nn0zd 12263 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
7068, 69zsubcld 12270 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ)
7170ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ)
7271zred 12265 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℝ)
731ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → 𝑃 ∈ ℙ)
7473, 54pccld 16384 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℕ0)
7574nn0zd 12263 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℤ)
7675zred 12265 . . . . . . . . 9 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃 pCnt (♯‘𝑧)) ∈ ℝ)
7772, 76ltnled 10962 . . . . . . . 8 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
7861, 77mpbird 260 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)))
79 zltp1le 12210 . . . . . . . 8 ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑧)) ∈ ℤ) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧))))
8071, 75, 79syl2anc 587 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧))))
8178, 80mpbid 235 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)))
8239ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0)
83 pcdvdsb 16403 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝑧) ∈ ℤ ∧ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈ ℕ0) → ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧)))
8473, 55, 82, 83syl3anc 1373 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧)))
8581, 84mpbid 235 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / )) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧))
8633, 42, 55, 85fsumdvds 15850 . . . 4 ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / )(♯‘𝑧))
8728, 86mtand 816 . . 3 (𝜑 → ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
88 dfrex2 3154 . . 3 (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ ¬ ∀𝑎 ∈ (𝑆 / ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
8987, 88sylibr 237 . 2 (𝜑 → ∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
90 eqid 2734 . . . 4 (𝑆 / ) = (𝑆 / )
91 fveq2 6706 . . . . . . 7 ([𝑧] = 𝑎 → (♯‘[𝑧] ) = (♯‘𝑎))
9291oveq2d 7218 . . . . . 6 ([𝑧] = 𝑎 → (𝑃 pCnt (♯‘[𝑧] )) = (𝑃 pCnt (♯‘𝑎)))
9392breq1d 5053 . . . . 5 ([𝑧] = 𝑎 → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
9493imbi1d 345 . . . 4 ([𝑧] = 𝑎 → (((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ↔ ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))))
95 eceq1 8418 . . . . . . . . . 10 (𝑤 = 𝑧 → [𝑤] = [𝑧] )
9695fveq2d 6710 . . . . . . . . 9 (𝑤 = 𝑧 → (♯‘[𝑤] ) = (♯‘[𝑧] ))
9796oveq2d 7218 . . . . . . . 8 (𝑤 = 𝑧 → (𝑃 pCnt (♯‘[𝑤] )) = (𝑃 pCnt (♯‘[𝑧] )))
9897breq1d 5053 . . . . . . 7 (𝑤 = 𝑧 → ((𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
9998rspcev 3530 . . . . . 6 ((𝑧𝑆 ∧ (𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
10099ex 416 . . . . 5 (𝑧𝑆 → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
101100adantl 485 . . . 4 ((𝜑𝑧𝑆) → ((𝑃 pCnt (♯‘[𝑧] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
10290, 94, 101ectocld 8455 . . 3 ((𝜑𝑎 ∈ (𝑆 / )) → ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
103102rexlimdva 3196 . 2 (𝜑 → (∃𝑎 ∈ (𝑆 / )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
10489, 103mpd 15 1 (𝜑 → ∃𝑤𝑆 (𝑃 pCnt (♯‘[𝑤] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  {crab 3058  wss 3857  c0 4227  𝒫 cpw 4503  {cpr 4533   class class class wbr 5043  {copab 5105  cmpt 5124  dom cdm 5540  ran crn 5541  cfv 6369  (class class class)co 7202  cmpo 7204   Er wer 8377  [cec 8378   / cqs 8379  Fincfn 8615  1c1 10713   + caddc 10715   < clt 10850  cle 10851  cmin 11045  cn 11813  0cn0 12073  cz 12159  cexp 13618  chash 13879  Σcsu 15232  cdvds 15796  cprime 16209   pCnt cpc 16370  Basecbs 16684  +gcplusg 16767  Grpcgrp 18337   GrpAct cga 18655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-disj 5009  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-er 8380  df-ec 8382  df-qs 8386  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-q 12528  df-rp 12570  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-dvds 15797  df-gcd 16035  df-prm 16210  df-pc 16371  df-0g 16918  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-grp 18340  df-minusg 18341  df-ga 18656
This theorem is referenced by:  sylow1  18964
  Copyright terms: Public domain W3C validator