Step | Hyp | Ref
| Expression |
1 | | sylow1.p |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ ℙ) |
2 | | sylow1.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
3 | | sylow1.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | | sylow1.f |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ Fin) |
5 | | sylow1.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
6 | | sylow1.d |
. . . . . . . 8
⊢ (𝜑 → (𝑃↑𝑁) ∥ (♯‘𝑋)) |
7 | | sylow1lem.a |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
8 | | sylow1lem.s |
. . . . . . . 8
⊢ 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} |
9 | 2, 3, 4, 1, 5, 6, 7, 8 | sylow1lem1 19203 |
. . . . . . 7
⊢ (𝜑 → ((♯‘𝑆) ∈ ℕ ∧ (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
10 | 9 | simpld 495 |
. . . . . 6
⊢ (𝜑 → (♯‘𝑆) ∈
ℕ) |
11 | | pcndvds 16567 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧
(♯‘𝑆) ∈
ℕ) → ¬ (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆)) |
12 | 1, 10, 11 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ¬ (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆)) |
13 | 9 | simprd 496 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 pCnt (♯‘𝑆)) = ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) |
14 | 13 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 pCnt (♯‘𝑆)) + 1) = (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) |
15 | 14 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → (𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) = (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1))) |
16 | | sylow1lem.m |
. . . . . . . . 9
⊢ ⊕ =
(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑆 ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
17 | 2, 3, 4, 1, 5, 6, 7, 8, 16 | sylow1lem2 19204 |
. . . . . . . 8
⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑆)) |
18 | | sylow1lem3.1 |
. . . . . . . . 9
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
19 | 18, 2 | gaorber 18914 |
. . . . . . . 8
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑆) → ∼ Er 𝑆) |
20 | 17, 19 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ∼ Er 𝑆) |
21 | | pwfi 8961 |
. . . . . . . . 9
⊢ (𝑋 ∈ Fin ↔ 𝒫
𝑋 ∈
Fin) |
22 | 4, 21 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → 𝒫 𝑋 ∈ Fin) |
23 | 8 | ssrab3 4015 |
. . . . . . . 8
⊢ 𝑆 ⊆ 𝒫 𝑋 |
24 | | ssfi 8956 |
. . . . . . . 8
⊢
((𝒫 𝑋 ∈
Fin ∧ 𝑆 ⊆
𝒫 𝑋) → 𝑆 ∈ Fin) |
25 | 22, 23, 24 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Fin) |
26 | 20, 25 | qshash 15539 |
. . . . . 6
⊢ (𝜑 → (♯‘𝑆) = Σ𝑧 ∈ (𝑆 / ∼
)(♯‘𝑧)) |
27 | 15, 26 | breq12d 5087 |
. . . . 5
⊢ (𝜑 → ((𝑃↑((𝑃 pCnt (♯‘𝑆)) + 1)) ∥ (♯‘𝑆) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / ∼
)(♯‘𝑧))) |
28 | 12, 27 | mtbid 324 |
. . . 4
⊢ (𝜑 → ¬ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / ∼
)(♯‘𝑧)) |
29 | | pwfi 8961 |
. . . . . . . 8
⊢ (𝑆 ∈ Fin ↔ 𝒫
𝑆 ∈
Fin) |
30 | 25, 29 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → 𝒫 𝑆 ∈ Fin) |
31 | 20 | qsss 8567 |
. . . . . . 7
⊢ (𝜑 → (𝑆 / ∼ ) ⊆ 𝒫
𝑆) |
32 | 30, 31 | ssfid 9042 |
. . . . . 6
⊢ (𝜑 → (𝑆 / ∼ ) ∈
Fin) |
33 | 32 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑆 / ∼ ) ∈
Fin) |
34 | | prmnn 16379 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
35 | 1, 34 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℕ) |
36 | 1, 10 | pccld 16551 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 pCnt (♯‘𝑆)) ∈
ℕ0) |
37 | 13, 36 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈
ℕ0) |
38 | | peano2nn0 12273 |
. . . . . . . . 9
⊢ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℕ0 → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈
ℕ0) |
39 | 37, 38 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈
ℕ0) |
40 | 35, 39 | nnexpcld 13960 |
. . . . . . 7
⊢ (𝜑 → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℕ) |
41 | 40 | nnzd 12425 |
. . . . . 6
⊢ (𝜑 → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℤ) |
42 | 41 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∈ ℤ) |
43 | | erdm 8508 |
. . . . . . . . . 10
⊢ ( ∼ Er
𝑆 → dom ∼ =
𝑆) |
44 | 20, 43 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → dom ∼ = 𝑆) |
45 | | elqsn0 8575 |
. . . . . . . . 9
⊢ ((dom
∼
= 𝑆 ∧ 𝑧 ∈ (𝑆 / ∼ )) → 𝑧 ≠ ∅) |
46 | 44, 45 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑆 / ∼ )) → 𝑧 ≠ ∅) |
47 | 25 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑆 / ∼ )) → 𝑆 ∈ Fin) |
48 | 31 | sselda 3921 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑆 / ∼ )) → 𝑧 ∈ 𝒫 𝑆) |
49 | 48 | elpwid 4544 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑆 / ∼ )) → 𝑧 ⊆ 𝑆) |
50 | 47, 49 | ssfid 9042 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑆 / ∼ )) → 𝑧 ∈ Fin) |
51 | | hashnncl 14081 |
. . . . . . . . 9
⊢ (𝑧 ∈ Fin →
((♯‘𝑧) ∈
ℕ ↔ 𝑧 ≠
∅)) |
52 | 50, 51 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑆 / ∼ )) →
((♯‘𝑧) ∈
ℕ ↔ 𝑧 ≠
∅)) |
53 | 46, 52 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑆 / ∼ )) →
(♯‘𝑧) ∈
ℕ) |
54 | 53 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) →
(♯‘𝑧) ∈
ℕ) |
55 | 54 | nnzd 12425 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) →
(♯‘𝑧) ∈
ℤ) |
56 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑧 → (♯‘𝑎) = (♯‘𝑧)) |
57 | 56 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑧 → (𝑃 pCnt (♯‘𝑎)) = (𝑃 pCnt (♯‘𝑧))) |
58 | 57 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑧 → ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
59 | 58 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑧 → (¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
60 | 59 | rspccva 3560 |
. . . . . . . . 9
⊢
((∀𝑎 ∈
(𝑆 / ∼ )
¬ (𝑃 pCnt
(♯‘𝑎)) ≤
((𝑃 pCnt
(♯‘𝑋)) −
𝑁) ∧ 𝑧 ∈ (𝑆 / ∼ )) → ¬
(𝑃 pCnt
(♯‘𝑧)) ≤
((𝑃 pCnt
(♯‘𝑋)) −
𝑁)) |
61 | 60 | adantll 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → ¬
(𝑃 pCnt
(♯‘𝑧)) ≤
((𝑃 pCnt
(♯‘𝑋)) −
𝑁)) |
62 | 2 | grpbn0 18608 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
63 | 3, 62 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ≠ ∅) |
64 | | hashnncl 14081 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ Fin →
((♯‘𝑋) ∈
ℕ ↔ 𝑋 ≠
∅)) |
65 | 4, 64 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
66 | 63, 65 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝑋) ∈
ℕ) |
67 | 1, 66 | pccld 16551 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈
ℕ0) |
68 | 67 | nn0zd 12424 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ) |
69 | 5 | nn0zd 12424 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
70 | 68, 69 | zsubcld 12431 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ) |
71 | 70 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ) |
72 | 71 | zred 12426 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℝ) |
73 | 1 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → 𝑃 ∈
ℙ) |
74 | 73, 54 | pccld 16551 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → (𝑃 pCnt (♯‘𝑧)) ∈
ℕ0) |
75 | 74 | nn0zd 12424 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → (𝑃 pCnt (♯‘𝑧)) ∈
ℤ) |
76 | 75 | zred 12426 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → (𝑃 pCnt (♯‘𝑧)) ∈
ℝ) |
77 | 72, 76 | ltnled 11122 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ ¬ (𝑃 pCnt (♯‘𝑧)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
78 | 61, 77 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → ((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧))) |
79 | | zltp1le 12370 |
. . . . . . . 8
⊢ ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑧)) ∈ ℤ) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)))) |
80 | 71, 75, 79 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) < (𝑃 pCnt (♯‘𝑧)) ↔ (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)))) |
81 | 78, 80 | mpbid 231 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧))) |
82 | 39 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → (((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ∈
ℕ0) |
83 | | pcdvdsb 16570 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧
(♯‘𝑧) ∈
ℤ ∧ (((𝑃 pCnt
(♯‘𝑋)) −
𝑁) + 1) ∈
ℕ0) → ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧))) |
84 | 73, 55, 82, 83 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → ((((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1) ≤ (𝑃 pCnt (♯‘𝑧)) ↔ (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧))) |
85 | 81, 84 | mpbid 231 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ∧ 𝑧 ∈ (𝑆 / ∼ )) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ (♯‘𝑧)) |
86 | 33, 42, 55, 85 | fsumdvds 16017 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → (𝑃↑(((𝑃 pCnt (♯‘𝑋)) − 𝑁) + 1)) ∥ Σ𝑧 ∈ (𝑆 / ∼
)(♯‘𝑧)) |
87 | 28, 86 | mtand 813 |
. . 3
⊢ (𝜑 → ¬ ∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) |
88 | | dfrex2 3170 |
. . 3
⊢
(∃𝑎 ∈
(𝑆 / ∼
)(𝑃 pCnt
(♯‘𝑎)) ≤
((𝑃 pCnt
(♯‘𝑋)) −
𝑁) ↔ ¬
∀𝑎 ∈ (𝑆 / ∼ ) ¬ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) |
89 | 87, 88 | sylibr 233 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ (𝑆 / ∼ )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) |
90 | | eqid 2738 |
. . . 4
⊢ (𝑆 / ∼ ) = (𝑆 / ∼ ) |
91 | | fveq2 6774 |
. . . . . . 7
⊢ ([𝑧] ∼ = 𝑎 → (♯‘[𝑧] ∼ ) =
(♯‘𝑎)) |
92 | 91 | oveq2d 7291 |
. . . . . 6
⊢ ([𝑧] ∼ = 𝑎 → (𝑃 pCnt (♯‘[𝑧] ∼ )) = (𝑃 pCnt (♯‘𝑎))) |
93 | 92 | breq1d 5084 |
. . . . 5
⊢ ([𝑧] ∼ = 𝑎 → ((𝑃 pCnt (♯‘[𝑧] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
94 | 93 | imbi1d 342 |
. . . 4
⊢ ([𝑧] ∼ = 𝑎 → (((𝑃 pCnt (♯‘[𝑧] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤 ∈ 𝑆 (𝑃 pCnt (♯‘[𝑤] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) ↔ ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤 ∈ 𝑆 (𝑃 pCnt (♯‘[𝑤] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))) |
95 | | eceq1 8536 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → [𝑤] ∼ = [𝑧] ∼ ) |
96 | 95 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (♯‘[𝑤] ∼ ) =
(♯‘[𝑧] ∼
)) |
97 | 96 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (𝑃 pCnt (♯‘[𝑤] ∼ )) = (𝑃 pCnt (♯‘[𝑧] ∼
))) |
98 | 97 | breq1d 5084 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → ((𝑃 pCnt (♯‘[𝑤] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) ↔ (𝑃 pCnt (♯‘[𝑧] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
99 | 98 | rspcev 3561 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑆 ∧ (𝑃 pCnt (♯‘[𝑧] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) → ∃𝑤 ∈ 𝑆 (𝑃 pCnt (♯‘[𝑤] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) |
100 | 99 | ex 413 |
. . . . 5
⊢ (𝑧 ∈ 𝑆 → ((𝑃 pCnt (♯‘[𝑧] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤 ∈ 𝑆 (𝑃 pCnt (♯‘[𝑤] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
101 | 100 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((𝑃 pCnt (♯‘[𝑧] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤 ∈ 𝑆 (𝑃 pCnt (♯‘[𝑤] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
102 | 90, 94, 101 | ectocld 8573 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑆 / ∼ )) → ((𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤 ∈ 𝑆 (𝑃 pCnt (♯‘[𝑤] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
103 | 102 | rexlimdva 3213 |
. 2
⊢ (𝜑 → (∃𝑎 ∈ (𝑆 / ∼ )(𝑃 pCnt (♯‘𝑎)) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁) → ∃𝑤 ∈ 𝑆 (𝑃 pCnt (♯‘[𝑤] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
104 | 89, 103 | mpd 15 |
1
⊢ (𝜑 → ∃𝑤 ∈ 𝑆 (𝑃 pCnt (♯‘[𝑤] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) |