MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem5 Structured version   Visualization version   GIF version

Theorem vitalilem5 25563
Description: Lemma for vitali 25564. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem5 ¬ 𝜑
Distinct variable groups:   𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑛,𝑥,𝑧   𝑧,𝑆   𝑥,𝑇   𝑛,𝐹,𝑠,𝑥,𝑦,𝑧   ,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem5
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0lt1 11757 . . . 4 0 < 1
2 0re 11235 . . . . . 6 0 ∈ ℝ
3 1re 11233 . . . . . 6 1 ∈ ℝ
4 0le1 11758 . . . . . 6 0 ≤ 1
5 ovolicc 25474 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol*‘(0[,]1)) = (1 − 0))
62, 3, 4, 5mp3an 1463 . . . . 5 (vol*‘(0[,]1)) = (1 − 0)
7 1m0e1 12359 . . . . 5 (1 − 0) = 1
86, 7eqtri 2758 . . . 4 (vol*‘(0[,]1)) = 1
91, 8breqtrri 5146 . . 3 0 < (vol*‘(0[,]1))
108, 3eqeltri 2830 . . . 4 (vol*‘(0[,]1)) ∈ ℝ
112, 10ltnlei 11354 . . 3 (0 < (vol*‘(0[,]1)) ↔ ¬ (vol*‘(0[,]1)) ≤ 0)
129, 11mpbi 230 . 2 ¬ (vol*‘(0[,]1)) ≤ 0
13 vitali.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
14 vitali.2 . . . . . 6 𝑆 = ((0[,]1) / )
15 vitali.3 . . . . . 6 (𝜑𝐹 Fn 𝑆)
16 vitali.4 . . . . . 6 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
17 vitali.5 . . . . . 6 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
18 vitali.6 . . . . . 6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
19 vitali.7 . . . . . 6 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
2013, 14, 15, 16, 17, 18, 19vitalilem2 25560 . . . . 5 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
2120simp2d 1143 . . . 4 (𝜑 → (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚))
2213vitalilem1 25559 . . . . . . . . . . . . . . . . . . . . . . 23 Er (0[,]1)
23 erdm 8727 . . . . . . . . . . . . . . . . . . . . . . 23 ( Er (0[,]1) → dom = (0[,]1))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 dom = (0[,]1)
25 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → 𝑧𝑆)
2625, 14eleqtrdi 2844 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑆) → 𝑧 ∈ ((0[,]1) / ))
27 elqsn0 8798 . . . . . . . . . . . . . . . . . . . . . 22 ((dom = (0[,]1) ∧ 𝑧 ∈ ((0[,]1) / )) → 𝑧 ≠ ∅)
2824, 26, 27sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑆) → 𝑧 ≠ ∅)
2922a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 Er (0[,]1))
3029qsss 8790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((0[,]1) / ) ⊆ 𝒫 (0[,]1))
3114, 30eqsstrid 3997 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑆 ⊆ 𝒫 (0[,]1))
3231sselda 3958 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → 𝑧 ∈ 𝒫 (0[,]1))
3332elpwid 4584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑆) → 𝑧 ⊆ (0[,]1))
3433sseld 3957 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑆) → ((𝐹𝑧) ∈ 𝑧 → (𝐹𝑧) ∈ (0[,]1)))
3528, 34embantd 59 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝑆) → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → (𝐹𝑧) ∈ (0[,]1)))
3635ralimdva 3152 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
3716, 36mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1))
38 ffnfv 7108 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑆⟶(0[,]1) ↔ (𝐹 Fn 𝑆 ∧ ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
3915, 37, 38sylanbrc 583 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑆⟶(0[,]1))
4039frnd 6713 . . . . . . . . . . . . . . . 16 (𝜑 → ran 𝐹 ⊆ (0[,]1))
41 unitssre 13514 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℝ
4240, 41sstrdi 3971 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ⊆ ℝ)
43 reex 11218 . . . . . . . . . . . . . . . 16 ℝ ∈ V
4443elpw2 5304 . . . . . . . . . . . . . . 15 (ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
4542, 44sylibr 234 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 ∈ 𝒫 ℝ)
4645anim1i 615 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
47 eldif 3936 . . . . . . . . . . . . 13 (ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
4846, 47sylibr 234 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
4948ex 412 . . . . . . . . . . 11 (𝜑 → (¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)))
5019, 49mt3d 148 . . . . . . . . . 10 (𝜑 → ran 𝐹 ∈ dom vol)
51 f1of 6817 . . . . . . . . . . . . 13 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
5217, 51syl 17 . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
53 inss1 4212 . . . . . . . . . . . . 13 (ℚ ∩ (-1[,]1)) ⊆ ℚ
54 qssre 12973 . . . . . . . . . . . . 13 ℚ ⊆ ℝ
5553, 54sstri 3968 . . . . . . . . . . . 12 (ℚ ∩ (-1[,]1)) ⊆ ℝ
56 fss 6721 . . . . . . . . . . . 12 ((𝐺:ℕ⟶(ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℝ) → 𝐺:ℕ⟶ℝ)
5752, 55, 56sylancl 586 . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶ℝ)
5857ffvelcdmda 7073 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
59 shftmbl 25489 . . . . . . . . . 10 ((ran 𝐹 ∈ dom vol ∧ (𝐺𝑛) ∈ ℝ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
6050, 58, 59syl2an2r 685 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
6160, 18fmptd 7103 . . . . . . . 8 (𝜑𝑇:ℕ⟶dom vol)
6261ffvelcdmda 7073 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ∈ dom vol)
6362ralrimiva 3132 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
64 iunmbl 25504 . . . . . 6 (∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
6563, 64syl 17 . . . . 5 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
66 mblss 25482 . . . . 5 ( 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
6765, 66syl 17 . . . 4 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
68 ovolss 25436 . . . 4 (((0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ) → (vol*‘(0[,]1)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
6921, 67, 68syl2anc 584 . . 3 (𝜑 → (vol*‘(0[,]1)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
70 eqid 2735 . . . . . 6 seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))))
71 eqid 2735 . . . . . 6 (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))
72 mblss 25482 . . . . . . 7 ((𝑇𝑚) ∈ dom vol → (𝑇𝑚) ⊆ ℝ)
7362, 72syl 17 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ⊆ ℝ)
7413, 14, 15, 16, 17, 18, 19vitalilem4 25562 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = 0)
7574, 2eqeltrdi 2842 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) ∈ ℝ)
7674mpteq2dva 5214 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ 0))
77 fconstmpt 5716 . . . . . . . . . . 11 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
78 nnuz 12893 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
7978xpeq1i 5680 . . . . . . . . . . 11 (ℕ × {0}) = ((ℤ‘1) × {0})
8077, 79eqtr3i 2760 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ 0) = ((ℤ‘1) × {0})
8176, 80eqtrdi 2786 . . . . . . . . 9 (𝜑 → (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = ((ℤ‘1) × {0}))
8281seqeq3d 14025 . . . . . . . 8 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) = seq1( + , ((ℤ‘1) × {0})))
83 1z 12620 . . . . . . . . 9 1 ∈ ℤ
84 serclim0 15591 . . . . . . . . 9 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
8583, 84ax-mp 5 . . . . . . . 8 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
8682, 85eqbrtrdi 5158 . . . . . . 7 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ⇝ 0)
87 seqex 14019 . . . . . . . 8 seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ V
88 c0ex 11227 . . . . . . . 8 0 ∈ V
8987, 88breldm 5888 . . . . . . 7 (seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ⇝ 0 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ dom ⇝ )
9086, 89syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ dom ⇝ )
9170, 71, 73, 75, 90ovoliun2 25457 . . . . 5 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)))
9274sumeq2dv 15716 . . . . . 6 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)) = Σ𝑚 ∈ ℕ 0)
9378eqimssi 4019 . . . . . . . 8 ℕ ⊆ (ℤ‘1)
9493orci 865 . . . . . . 7 (ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin)
95 sumz 15736 . . . . . . 7 ((ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin) → Σ𝑚 ∈ ℕ 0 = 0)
9694, 95ax-mp 5 . . . . . 6 Σ𝑚 ∈ ℕ 0 = 0
9792, 96eqtrdi 2786 . . . . 5 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)) = 0)
9891, 97breqtrd 5145 . . . 4 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0)
99 ovolge0 25432 . . . . 5 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
10067, 99syl 17 . . . 4 (𝜑 → 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
101 ovolcl 25429 . . . . . 6 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
10267, 101syl 17 . . . . 5 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
103 0xr 11280 . . . . 5 0 ∈ ℝ*
104 xrletri3 13168 . . . . 5 (((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0 ↔ ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))))
105102, 103, 104sylancl 586 . . . 4 (𝜑 → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0 ↔ ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))))
10698, 100, 105mpbir2and 713 . . 3 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0)
10769, 106breqtrd 5145 . 2 (𝜑 → (vol*‘(0[,]1)) ≤ 0)
10812, 107mto 197 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  cdif 3923  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   ciun 4967   class class class wbr 5119  {copab 5181  cmpt 5201   × cxp 5652  dom cdm 5654  ran crn 5655   Fn wfn 6525  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403   Er wer 8714   / cqs 8716  Fincfn 8957  cr 11126  0cc0 11127  1c1 11128   + caddc 11130  *cxr 11266   < clt 11267  cle 11268  cmin 11464  -cneg 11465  cn 12238  2c2 12293  cz 12586  cuz 12850  cq 12962  [,]cicc 13363  seqcseq 14017  cli 15498  Σcsu 15700  vol*covol 25413  volcvol 25414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-rest 17434  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-cmp 23323  df-ovol 25415  df-vol 25416
This theorem is referenced by:  vitali  25564
  Copyright terms: Public domain W3C validator