MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem5 Structured version   Visualization version   GIF version

Theorem vitalilem5 23670
Description: Lemma for vitali 23671. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem5 ¬ 𝜑
Distinct variable groups:   𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑛,𝑥,𝑧   𝑧,𝑆   𝑥,𝑇   𝑛,𝐹,𝑠,𝑥,𝑦,𝑧   ,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem5
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0lt1 10804 . . . 4 0 < 1
2 0re 10295 . . . . . 6 0 ∈ ℝ
3 1re 10293 . . . . . 6 1 ∈ ℝ
4 0le1 10805 . . . . . 6 0 ≤ 1
5 ovolicc 23581 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol*‘(0[,]1)) = (1 − 0))
62, 3, 4, 5mp3an 1585 . . . . 5 (vol*‘(0[,]1)) = (1 − 0)
7 1m0e1 11400 . . . . 5 (1 − 0) = 1
86, 7eqtri 2787 . . . 4 (vol*‘(0[,]1)) = 1
91, 8breqtrri 4836 . . 3 0 < (vol*‘(0[,]1))
108, 3eqeltri 2840 . . . 4 (vol*‘(0[,]1)) ∈ ℝ
112, 10ltnlei 10412 . . 3 (0 < (vol*‘(0[,]1)) ↔ ¬ (vol*‘(0[,]1)) ≤ 0)
129, 11mpbi 221 . 2 ¬ (vol*‘(0[,]1)) ≤ 0
13 vitali.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
14 vitali.2 . . . . . 6 𝑆 = ((0[,]1) / )
15 vitali.3 . . . . . 6 (𝜑𝐹 Fn 𝑆)
16 vitali.4 . . . . . 6 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
17 vitali.5 . . . . . 6 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
18 vitali.6 . . . . . 6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
19 vitali.7 . . . . . 6 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
2013, 14, 15, 16, 17, 18, 19vitalilem2 23667 . . . . 5 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
2120simp2d 1173 . . . 4 (𝜑 → (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚))
2213vitalilem1 23666 . . . . . . . . . . . . . . . . . . . . . . . 24 Er (0[,]1)
23 erdm 7957 . . . . . . . . . . . . . . . . . . . . . . . 24 ( Er (0[,]1) → dom = (0[,]1))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 dom = (0[,]1)
25 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝑆) → 𝑧𝑆)
2625, 14syl6eleq 2854 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → 𝑧 ∈ ((0[,]1) / ))
27 elqsn0 8019 . . . . . . . . . . . . . . . . . . . . . . 23 ((dom = (0[,]1) ∧ 𝑧 ∈ ((0[,]1) / )) → 𝑧 ≠ ∅)
2824, 26, 27sylancr 581 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑆) → 𝑧 ≠ ∅)
2922a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 Er (0[,]1))
3029qsss 8011 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((0[,]1) / ) ⊆ 𝒫 (0[,]1))
3114, 30syl5eqss 3809 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑆 ⊆ 𝒫 (0[,]1))
3231sselda 3761 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝑆) → 𝑧 ∈ 𝒫 (0[,]1))
3332elpwid 4327 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → 𝑧 ⊆ (0[,]1))
3433sseld 3760 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑆) → ((𝐹𝑧) ∈ 𝑧 → (𝐹𝑧) ∈ (0[,]1)))
3528, 34embantd 59 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑆) → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → (𝐹𝑧) ∈ (0[,]1)))
3635ralimdva 3109 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
3716, 36mpd 15 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1))
38 ffnfv 6578 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝑆⟶(0[,]1) ↔ (𝐹 Fn 𝑆 ∧ ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
3915, 37, 38sylanbrc 578 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝑆⟶(0[,]1))
4039frnd 6230 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ⊆ (0[,]1))
41 unitssre 12526 . . . . . . . . . . . . . . . . 17 (0[,]1) ⊆ ℝ
4240, 41syl6ss 3773 . . . . . . . . . . . . . . . 16 (𝜑 → ran 𝐹 ⊆ ℝ)
43 reex 10280 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
4443elpw2 4986 . . . . . . . . . . . . . . . 16 (ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
4542, 44sylibr 225 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ∈ 𝒫 ℝ)
4645anim1i 608 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
47 eldif 3742 . . . . . . . . . . . . . 14 (ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
4846, 47sylibr 225 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
4948ex 401 . . . . . . . . . . . 12 (𝜑 → (¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)))
5019, 49mt3d 142 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ∈ dom vol)
5150adantr 472 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ran 𝐹 ∈ dom vol)
52 f1of 6320 . . . . . . . . . . . . 13 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
5317, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
54 inss1 3992 . . . . . . . . . . . . 13 (ℚ ∩ (-1[,]1)) ⊆ ℚ
55 qssre 11999 . . . . . . . . . . . . 13 ℚ ⊆ ℝ
5654, 55sstri 3770 . . . . . . . . . . . 12 (ℚ ∩ (-1[,]1)) ⊆ ℝ
57 fss 6236 . . . . . . . . . . . 12 ((𝐺:ℕ⟶(ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℝ) → 𝐺:ℕ⟶ℝ)
5853, 56, 57sylancl 580 . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶ℝ)
5958ffvelrnda 6549 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
60 shftmbl 23596 . . . . . . . . . 10 ((ran 𝐹 ∈ dom vol ∧ (𝐺𝑛) ∈ ℝ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
6151, 59, 60syl2anc 579 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
6261, 18fmptd 6574 . . . . . . . 8 (𝜑𝑇:ℕ⟶dom vol)
6362ffvelrnda 6549 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ∈ dom vol)
6463ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
65 iunmbl 23611 . . . . . 6 (∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
6664, 65syl 17 . . . . 5 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
67 mblss 23589 . . . . 5 ( 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
6866, 67syl 17 . . . 4 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
69 ovolss 23543 . . . 4 (((0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ) → (vol*‘(0[,]1)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
7021, 68, 69syl2anc 579 . . 3 (𝜑 → (vol*‘(0[,]1)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
71 eqid 2765 . . . . . 6 seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))))
72 eqid 2765 . . . . . 6 (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))
73 mblss 23589 . . . . . . 7 ((𝑇𝑚) ∈ dom vol → (𝑇𝑚) ⊆ ℝ)
7463, 73syl 17 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ⊆ ℝ)
7513, 14, 15, 16, 17, 18, 19vitalilem4 23669 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = 0)
7675, 2syl6eqel 2852 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) ∈ ℝ)
7775mpteq2dva 4903 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ 0))
78 fconstmpt 5333 . . . . . . . . . . 11 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
79 nnuz 11923 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
8079xpeq1i 5303 . . . . . . . . . . 11 (ℕ × {0}) = ((ℤ‘1) × {0})
8178, 80eqtr3i 2789 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ 0) = ((ℤ‘1) × {0})
8277, 81syl6eq 2815 . . . . . . . . 9 (𝜑 → (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = ((ℤ‘1) × {0}))
8382seqeq3d 13016 . . . . . . . 8 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) = seq1( + , ((ℤ‘1) × {0})))
84 1z 11654 . . . . . . . . 9 1 ∈ ℤ
85 serclim0 14595 . . . . . . . . 9 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
8684, 85ax-mp 5 . . . . . . . 8 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
8783, 86syl6eqbr 4848 . . . . . . 7 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ⇝ 0)
88 seqex 13010 . . . . . . . 8 seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ V
89 c0ex 10287 . . . . . . . 8 0 ∈ V
9088, 89breldm 5497 . . . . . . 7 (seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ⇝ 0 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ dom ⇝ )
9187, 90syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ dom ⇝ )
9271, 72, 74, 76, 91ovoliun2 23564 . . . . 5 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)))
9375sumeq2dv 14720 . . . . . 6 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)) = Σ𝑚 ∈ ℕ 0)
9479eqimssi 3819 . . . . . . . 8 ℕ ⊆ (ℤ‘1)
9594orci 891 . . . . . . 7 (ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin)
96 sumz 14740 . . . . . . 7 ((ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin) → Σ𝑚 ∈ ℕ 0 = 0)
9795, 96ax-mp 5 . . . . . 6 Σ𝑚 ∈ ℕ 0 = 0
9893, 97syl6eq 2815 . . . . 5 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)) = 0)
9992, 98breqtrd 4835 . . . 4 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0)
100 ovolge0 23539 . . . . 5 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
10168, 100syl 17 . . . 4 (𝜑 → 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
102 ovolcl 23536 . . . . . 6 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
10368, 102syl 17 . . . . 5 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
104 0xr 10340 . . . . 5 0 ∈ ℝ*
105 xrletri3 12187 . . . . 5 (((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0 ↔ ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))))
106103, 104, 105sylancl 580 . . . 4 (𝜑 → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0 ↔ ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))))
10799, 101, 106mpbir2and 704 . . 3 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0)
10870, 107breqtrd 4835 . 2 (𝜑 → (vol*‘(0[,]1)) ≤ 0)
10912, 108mto 188 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2937  wral 3055  {crab 3059  cdif 3729  cin 3731  wss 3732  c0 4079  𝒫 cpw 4315  {csn 4334   ciun 4676   class class class wbr 4809  {copab 4871  cmpt 4888   × cxp 5275  dom cdm 5277  ran crn 5278   Fn wfn 6063  wf 6064  1-1-ontowf1o 6067  cfv 6068  (class class class)co 6842   Er wer 7944   / cqs 7946  Fincfn 8160  cr 10188  0cc0 10189  1c1 10190   + caddc 10192  *cxr 10327   < clt 10328  cle 10329  cmin 10520  -cneg 10521  cn 11274  2c2 11327  cz 11624  cuz 11886  cq 11989  [,]cicc 12380  seqcseq 13008  cli 14502  Σcsu 14703  vol*covol 23520  volcvol 23521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-ec 7949  df-qs 7953  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-rlim 14507  df-sum 14704  df-rest 16351  df-topgen 16372  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-bases 21030  df-cmp 21470  df-ovol 23522  df-vol 23523
This theorem is referenced by:  vitali  23671
  Copyright terms: Public domain W3C validator