MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem5 Structured version   Visualization version   GIF version

Theorem vitalilem5 25120
Description: Lemma for vitali 25121. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem5 ¬ 𝜑
Distinct variable groups:   𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑛,𝑥,𝑧   𝑧,𝑆   𝑥,𝑇   𝑛,𝐹,𝑠,𝑥,𝑦,𝑧   ,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem5
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0lt1 11732 . . . 4 0 < 1
2 0re 11212 . . . . . 6 0 ∈ ℝ
3 1re 11210 . . . . . 6 1 ∈ ℝ
4 0le1 11733 . . . . . 6 0 ≤ 1
5 ovolicc 25031 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol*‘(0[,]1)) = (1 − 0))
62, 3, 4, 5mp3an 1461 . . . . 5 (vol*‘(0[,]1)) = (1 − 0)
7 1m0e1 12329 . . . . 5 (1 − 0) = 1
86, 7eqtri 2760 . . . 4 (vol*‘(0[,]1)) = 1
91, 8breqtrri 5174 . . 3 0 < (vol*‘(0[,]1))
108, 3eqeltri 2829 . . . 4 (vol*‘(0[,]1)) ∈ ℝ
112, 10ltnlei 11331 . . 3 (0 < (vol*‘(0[,]1)) ↔ ¬ (vol*‘(0[,]1)) ≤ 0)
129, 11mpbi 229 . 2 ¬ (vol*‘(0[,]1)) ≤ 0
13 vitali.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
14 vitali.2 . . . . . 6 𝑆 = ((0[,]1) / )
15 vitali.3 . . . . . 6 (𝜑𝐹 Fn 𝑆)
16 vitali.4 . . . . . 6 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
17 vitali.5 . . . . . 6 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
18 vitali.6 . . . . . 6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
19 vitali.7 . . . . . 6 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
2013, 14, 15, 16, 17, 18, 19vitalilem2 25117 . . . . 5 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
2120simp2d 1143 . . . 4 (𝜑 → (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚))
2213vitalilem1 25116 . . . . . . . . . . . . . . . . . . . . . . 23 Er (0[,]1)
23 erdm 8709 . . . . . . . . . . . . . . . . . . . . . . 23 ( Er (0[,]1) → dom = (0[,]1))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 dom = (0[,]1)
25 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → 𝑧𝑆)
2625, 14eleqtrdi 2843 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑆) → 𝑧 ∈ ((0[,]1) / ))
27 elqsn0 8776 . . . . . . . . . . . . . . . . . . . . . 22 ((dom = (0[,]1) ∧ 𝑧 ∈ ((0[,]1) / )) → 𝑧 ≠ ∅)
2824, 26, 27sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑆) → 𝑧 ≠ ∅)
2922a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 Er (0[,]1))
3029qsss 8768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((0[,]1) / ) ⊆ 𝒫 (0[,]1))
3114, 30eqsstrid 4029 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑆 ⊆ 𝒫 (0[,]1))
3231sselda 3981 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → 𝑧 ∈ 𝒫 (0[,]1))
3332elpwid 4610 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑆) → 𝑧 ⊆ (0[,]1))
3433sseld 3980 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑆) → ((𝐹𝑧) ∈ 𝑧 → (𝐹𝑧) ∈ (0[,]1)))
3528, 34embantd 59 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝑆) → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → (𝐹𝑧) ∈ (0[,]1)))
3635ralimdva 3167 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
3716, 36mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1))
38 ffnfv 7114 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑆⟶(0[,]1) ↔ (𝐹 Fn 𝑆 ∧ ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
3915, 37, 38sylanbrc 583 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑆⟶(0[,]1))
4039frnd 6722 . . . . . . . . . . . . . . . 16 (𝜑 → ran 𝐹 ⊆ (0[,]1))
41 unitssre 13472 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℝ
4240, 41sstrdi 3993 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ⊆ ℝ)
43 reex 11197 . . . . . . . . . . . . . . . 16 ℝ ∈ V
4443elpw2 5344 . . . . . . . . . . . . . . 15 (ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
4542, 44sylibr 233 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 ∈ 𝒫 ℝ)
4645anim1i 615 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
47 eldif 3957 . . . . . . . . . . . . 13 (ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
4846, 47sylibr 233 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
4948ex 413 . . . . . . . . . . 11 (𝜑 → (¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)))
5019, 49mt3d 148 . . . . . . . . . 10 (𝜑 → ran 𝐹 ∈ dom vol)
51 f1of 6830 . . . . . . . . . . . . 13 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
5217, 51syl 17 . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
53 inss1 4227 . . . . . . . . . . . . 13 (ℚ ∩ (-1[,]1)) ⊆ ℚ
54 qssre 12939 . . . . . . . . . . . . 13 ℚ ⊆ ℝ
5553, 54sstri 3990 . . . . . . . . . . . 12 (ℚ ∩ (-1[,]1)) ⊆ ℝ
56 fss 6731 . . . . . . . . . . . 12 ((𝐺:ℕ⟶(ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℝ) → 𝐺:ℕ⟶ℝ)
5752, 55, 56sylancl 586 . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶ℝ)
5857ffvelcdmda 7083 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
59 shftmbl 25046 . . . . . . . . . 10 ((ran 𝐹 ∈ dom vol ∧ (𝐺𝑛) ∈ ℝ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
6050, 58, 59syl2an2r 683 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
6160, 18fmptd 7110 . . . . . . . 8 (𝜑𝑇:ℕ⟶dom vol)
6261ffvelcdmda 7083 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ∈ dom vol)
6362ralrimiva 3146 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
64 iunmbl 25061 . . . . . 6 (∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
6563, 64syl 17 . . . . 5 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
66 mblss 25039 . . . . 5 ( 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
6765, 66syl 17 . . . 4 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
68 ovolss 24993 . . . 4 (((0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ) → (vol*‘(0[,]1)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
6921, 67, 68syl2anc 584 . . 3 (𝜑 → (vol*‘(0[,]1)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
70 eqid 2732 . . . . . 6 seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))))
71 eqid 2732 . . . . . 6 (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))
72 mblss 25039 . . . . . . 7 ((𝑇𝑚) ∈ dom vol → (𝑇𝑚) ⊆ ℝ)
7362, 72syl 17 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ⊆ ℝ)
7413, 14, 15, 16, 17, 18, 19vitalilem4 25119 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = 0)
7574, 2eqeltrdi 2841 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) ∈ ℝ)
7674mpteq2dva 5247 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ 0))
77 fconstmpt 5736 . . . . . . . . . . 11 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
78 nnuz 12861 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
7978xpeq1i 5701 . . . . . . . . . . 11 (ℕ × {0}) = ((ℤ‘1) × {0})
8077, 79eqtr3i 2762 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ 0) = ((ℤ‘1) × {0})
8176, 80eqtrdi 2788 . . . . . . . . 9 (𝜑 → (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = ((ℤ‘1) × {0}))
8281seqeq3d 13970 . . . . . . . 8 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) = seq1( + , ((ℤ‘1) × {0})))
83 1z 12588 . . . . . . . . 9 1 ∈ ℤ
84 serclim0 15517 . . . . . . . . 9 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
8583, 84ax-mp 5 . . . . . . . 8 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
8682, 85eqbrtrdi 5186 . . . . . . 7 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ⇝ 0)
87 seqex 13964 . . . . . . . 8 seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ V
88 c0ex 11204 . . . . . . . 8 0 ∈ V
8987, 88breldm 5906 . . . . . . 7 (seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ⇝ 0 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ dom ⇝ )
9086, 89syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ dom ⇝ )
9170, 71, 73, 75, 90ovoliun2 25014 . . . . 5 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)))
9274sumeq2dv 15645 . . . . . 6 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)) = Σ𝑚 ∈ ℕ 0)
9378eqimssi 4041 . . . . . . . 8 ℕ ⊆ (ℤ‘1)
9493orci 863 . . . . . . 7 (ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin)
95 sumz 15664 . . . . . . 7 ((ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin) → Σ𝑚 ∈ ℕ 0 = 0)
9694, 95ax-mp 5 . . . . . 6 Σ𝑚 ∈ ℕ 0 = 0
9792, 96eqtrdi 2788 . . . . 5 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)) = 0)
9891, 97breqtrd 5173 . . . 4 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0)
99 ovolge0 24989 . . . . 5 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
10067, 99syl 17 . . . 4 (𝜑 → 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
101 ovolcl 24986 . . . . . 6 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
10267, 101syl 17 . . . . 5 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
103 0xr 11257 . . . . 5 0 ∈ ℝ*
104 xrletri3 13129 . . . . 5 (((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0 ↔ ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))))
105102, 103, 104sylancl 586 . . . 4 (𝜑 → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0 ↔ ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))))
10698, 100, 105mpbir2and 711 . . 3 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0)
10769, 106breqtrd 5173 . 2 (𝜑 → (vol*‘(0[,]1)) ≤ 0)
10812, 107mto 196 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wral 3061  {crab 3432  cdif 3944  cin 3946  wss 3947  c0 4321  𝒫 cpw 4601  {csn 4627   ciun 4996   class class class wbr 5147  {copab 5209  cmpt 5230   × cxp 5673  dom cdm 5675  ran crn 5676   Fn wfn 6535  wf 6536  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405   Er wer 8696   / cqs 8698  Fincfn 8935  cr 11105  0cc0 11106  1c1 11107   + caddc 11109  *cxr 11243   < clt 11244  cle 11245  cmin 11440  -cneg 11441  cn 12208  2c2 12263  cz 12554  cuz 12818  cq 12928  [,]cicc 13323  seqcseq 13962  cli 15424  Σcsu 15628  vol*covol 24970  volcvol 24971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cc 10426  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-rest 17364  df-topgen 17385  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-bases 22440  df-cmp 22882  df-ovol 24972  df-vol 24973
This theorem is referenced by:  vitali  25121
  Copyright terms: Public domain W3C validator