MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem5 Structured version   Visualization version   GIF version

Theorem vitalilem5 24216
Description: Lemma for vitali 24217. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem5 ¬ 𝜑
Distinct variable groups:   𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑛,𝑥,𝑧   𝑧,𝑆   𝑥,𝑇   𝑛,𝐹,𝑠,𝑥,𝑦,𝑧   ,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem5
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0lt1 11151 . . . 4 0 < 1
2 0re 10632 . . . . . 6 0 ∈ ℝ
3 1re 10630 . . . . . 6 1 ∈ ℝ
4 0le1 11152 . . . . . 6 0 ≤ 1
5 ovolicc 24127 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol*‘(0[,]1)) = (1 − 0))
62, 3, 4, 5mp3an 1458 . . . . 5 (vol*‘(0[,]1)) = (1 − 0)
7 1m0e1 11746 . . . . 5 (1 − 0) = 1
86, 7eqtri 2821 . . . 4 (vol*‘(0[,]1)) = 1
91, 8breqtrri 5057 . . 3 0 < (vol*‘(0[,]1))
108, 3eqeltri 2886 . . . 4 (vol*‘(0[,]1)) ∈ ℝ
112, 10ltnlei 10750 . . 3 (0 < (vol*‘(0[,]1)) ↔ ¬ (vol*‘(0[,]1)) ≤ 0)
129, 11mpbi 233 . 2 ¬ (vol*‘(0[,]1)) ≤ 0
13 vitali.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
14 vitali.2 . . . . . 6 𝑆 = ((0[,]1) / )
15 vitali.3 . . . . . 6 (𝜑𝐹 Fn 𝑆)
16 vitali.4 . . . . . 6 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
17 vitali.5 . . . . . 6 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
18 vitali.6 . . . . . 6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
19 vitali.7 . . . . . 6 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
2013, 14, 15, 16, 17, 18, 19vitalilem2 24213 . . . . 5 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
2120simp2d 1140 . . . 4 (𝜑 → (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚))
2213vitalilem1 24212 . . . . . . . . . . . . . . . . . . . . . . 23 Er (0[,]1)
23 erdm 8282 . . . . . . . . . . . . . . . . . . . . . . 23 ( Er (0[,]1) → dom = (0[,]1))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 dom = (0[,]1)
25 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → 𝑧𝑆)
2625, 14eleqtrdi 2900 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑆) → 𝑧 ∈ ((0[,]1) / ))
27 elqsn0 8349 . . . . . . . . . . . . . . . . . . . . . 22 ((dom = (0[,]1) ∧ 𝑧 ∈ ((0[,]1) / )) → 𝑧 ≠ ∅)
2824, 26, 27sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑆) → 𝑧 ≠ ∅)
2922a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 Er (0[,]1))
3029qsss 8341 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((0[,]1) / ) ⊆ 𝒫 (0[,]1))
3114, 30eqsstrid 3963 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑆 ⊆ 𝒫 (0[,]1))
3231sselda 3915 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → 𝑧 ∈ 𝒫 (0[,]1))
3332elpwid 4508 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑆) → 𝑧 ⊆ (0[,]1))
3433sseld 3914 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑆) → ((𝐹𝑧) ∈ 𝑧 → (𝐹𝑧) ∈ (0[,]1)))
3528, 34embantd 59 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝑆) → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → (𝐹𝑧) ∈ (0[,]1)))
3635ralimdva 3144 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
3716, 36mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1))
38 ffnfv 6859 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑆⟶(0[,]1) ↔ (𝐹 Fn 𝑆 ∧ ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
3915, 37, 38sylanbrc 586 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑆⟶(0[,]1))
4039frnd 6494 . . . . . . . . . . . . . . . 16 (𝜑 → ran 𝐹 ⊆ (0[,]1))
41 unitssre 12877 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℝ
4240, 41sstrdi 3927 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ⊆ ℝ)
43 reex 10617 . . . . . . . . . . . . . . . 16 ℝ ∈ V
4443elpw2 5212 . . . . . . . . . . . . . . 15 (ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
4542, 44sylibr 237 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 ∈ 𝒫 ℝ)
4645anim1i 617 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
47 eldif 3891 . . . . . . . . . . . . 13 (ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
4846, 47sylibr 237 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
4948ex 416 . . . . . . . . . . 11 (𝜑 → (¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)))
5019, 49mt3d 150 . . . . . . . . . 10 (𝜑 → ran 𝐹 ∈ dom vol)
51 f1of 6590 . . . . . . . . . . . . 13 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
5217, 51syl 17 . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
53 inss1 4155 . . . . . . . . . . . . 13 (ℚ ∩ (-1[,]1)) ⊆ ℚ
54 qssre 12346 . . . . . . . . . . . . 13 ℚ ⊆ ℝ
5553, 54sstri 3924 . . . . . . . . . . . 12 (ℚ ∩ (-1[,]1)) ⊆ ℝ
56 fss 6501 . . . . . . . . . . . 12 ((𝐺:ℕ⟶(ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℝ) → 𝐺:ℕ⟶ℝ)
5752, 55, 56sylancl 589 . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶ℝ)
5857ffvelrnda 6828 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
59 shftmbl 24142 . . . . . . . . . 10 ((ran 𝐹 ∈ dom vol ∧ (𝐺𝑛) ∈ ℝ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
6050, 58, 59syl2an2r 684 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
6160, 18fmptd 6855 . . . . . . . 8 (𝜑𝑇:ℕ⟶dom vol)
6261ffvelrnda 6828 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ∈ dom vol)
6362ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
64 iunmbl 24157 . . . . . 6 (∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
6563, 64syl 17 . . . . 5 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
66 mblss 24135 . . . . 5 ( 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
6765, 66syl 17 . . . 4 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
68 ovolss 24089 . . . 4 (((0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ) → (vol*‘(0[,]1)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
6921, 67, 68syl2anc 587 . . 3 (𝜑 → (vol*‘(0[,]1)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
70 eqid 2798 . . . . . 6 seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))))
71 eqid 2798 . . . . . 6 (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))
72 mblss 24135 . . . . . . 7 ((𝑇𝑚) ∈ dom vol → (𝑇𝑚) ⊆ ℝ)
7362, 72syl 17 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ⊆ ℝ)
7413, 14, 15, 16, 17, 18, 19vitalilem4 24215 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = 0)
7574, 2eqeltrdi 2898 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) ∈ ℝ)
7674mpteq2dva 5125 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ 0))
77 fconstmpt 5578 . . . . . . . . . . 11 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
78 nnuz 12269 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
7978xpeq1i 5545 . . . . . . . . . . 11 (ℕ × {0}) = ((ℤ‘1) × {0})
8077, 79eqtr3i 2823 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ 0) = ((ℤ‘1) × {0})
8176, 80eqtrdi 2849 . . . . . . . . 9 (𝜑 → (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚))) = ((ℤ‘1) × {0}))
8281seqeq3d 13372 . . . . . . . 8 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) = seq1( + , ((ℤ‘1) × {0})))
83 1z 12000 . . . . . . . . 9 1 ∈ ℤ
84 serclim0 14926 . . . . . . . . 9 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
8583, 84ax-mp 5 . . . . . . . 8 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
8682, 85eqbrtrdi 5069 . . . . . . 7 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ⇝ 0)
87 seqex 13366 . . . . . . . 8 seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ V
88 c0ex 10624 . . . . . . . 8 0 ∈ V
8987, 88breldm 5741 . . . . . . 7 (seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ⇝ 0 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ dom ⇝ )
9086, 89syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑇𝑚)))) ∈ dom ⇝ )
9170, 71, 73, 75, 90ovoliun2 24110 . . . . 5 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)))
9274sumeq2dv 15052 . . . . . 6 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)) = Σ𝑚 ∈ ℕ 0)
9378eqimssi 3973 . . . . . . . 8 ℕ ⊆ (ℤ‘1)
9493orci 862 . . . . . . 7 (ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin)
95 sumz 15071 . . . . . . 7 ((ℕ ⊆ (ℤ‘1) ∨ ℕ ∈ Fin) → Σ𝑚 ∈ ℕ 0 = 0)
9694, 95ax-mp 5 . . . . . 6 Σ𝑚 ∈ ℕ 0 = 0
9792, 96eqtrdi 2849 . . . . 5 (𝜑 → Σ𝑚 ∈ ℕ (vol*‘(𝑇𝑚)) = 0)
9891, 97breqtrd 5056 . . . 4 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0)
99 ovolge0 24085 . . . . 5 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
10067, 99syl 17 . . . 4 (𝜑 → 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
101 ovolcl 24082 . . . . . 6 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
10267, 101syl 17 . . . . 5 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
103 0xr 10677 . . . . 5 0 ∈ ℝ*
104 xrletri3 12535 . . . . 5 (((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0 ↔ ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))))
105102, 103, 104sylancl 589 . . . 4 (𝜑 → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0 ↔ ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))))
10698, 100, 105mpbir2and 712 . . 3 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = 0)
10769, 106breqtrd 5056 . 2 (𝜑 → (vol*‘(0[,]1)) ≤ 0)
10812, 107mto 200 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  cdif 3878  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525   ciun 4881   class class class wbr 5030  {copab 5092  cmpt 5110   × cxp 5517  dom cdm 5519  ran crn 5520   Fn wfn 6319  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135   Er wer 8269   / cqs 8271  Fincfn 8492  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860  cn 11625  2c2 11680  cz 11969  cuz 12231  cq 12336  [,]cicc 12729  seqcseq 13364  cli 14833  Σcsu 15034  vol*covol 24066  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069
This theorem is referenced by:  vitali  24217
  Copyright terms: Public domain W3C validator