MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsfval Structured version   Visualization version   GIF version

Theorem divsfval 17517
Description: Value of the function in qusval 17512. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
Assertion
Ref Expression
divsfval (𝜑 → (𝐹𝐴) = [𝐴] )
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem divsfval
StepHypRef Expression
1 ercpbl.v . . . . 5 (𝜑𝑉𝑊)
2 ercpbl.r . . . . . 6 (𝜑 Er 𝑉)
32ecss 8725 . . . . 5 (𝜑 → [𝐴] 𝑉)
41, 3ssexd 5282 . . . 4 (𝜑 → [𝐴] ∈ V)
5 eceq1 8713 . . . . 5 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
6 ercpbl.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
75, 6fvmptg 6969 . . . 4 ((𝐴𝑉 ∧ [𝐴] ∈ V) → (𝐹𝐴) = [𝐴] )
84, 7sylan2 593 . . 3 ((𝐴𝑉𝜑) → (𝐹𝐴) = [𝐴] )
98expcom 413 . 2 (𝜑 → (𝐴𝑉 → (𝐹𝐴) = [𝐴] ))
106dmeqi 5871 . . . . . . . 8 dom 𝐹 = dom (𝑥𝑉 ↦ [𝑥] )
112ecss 8725 . . . . . . . . . . 11 (𝜑 → [𝑥] 𝑉)
121, 11ssexd 5282 . . . . . . . . . 10 (𝜑 → [𝑥] ∈ V)
1312ralrimivw 3130 . . . . . . . . 9 (𝜑 → ∀𝑥𝑉 [𝑥] ∈ V)
14 dmmptg 6218 . . . . . . . . 9 (∀𝑥𝑉 [𝑥] ∈ V → dom (𝑥𝑉 ↦ [𝑥] ) = 𝑉)
1513, 14syl 17 . . . . . . . 8 (𝜑 → dom (𝑥𝑉 ↦ [𝑥] ) = 𝑉)
1610, 15eqtrid 2777 . . . . . . 7 (𝜑 → dom 𝐹 = 𝑉)
1716eleq2d 2815 . . . . . 6 (𝜑 → (𝐴 ∈ dom 𝐹𝐴𝑉))
1817notbid 318 . . . . 5 (𝜑 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐴𝑉))
19 ndmfv 6896 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
2018, 19biimtrrdi 254 . . . 4 (𝜑 → (¬ 𝐴𝑉 → (𝐹𝐴) = ∅))
21 ecdmn0 8726 . . . . . 6 (𝐴 ∈ dom ↔ [𝐴] ≠ ∅)
22 erdm 8684 . . . . . . . . 9 ( Er 𝑉 → dom = 𝑉)
232, 22syl 17 . . . . . . . 8 (𝜑 → dom = 𝑉)
2423eleq2d 2815 . . . . . . 7 (𝜑 → (𝐴 ∈ dom 𝐴𝑉))
2524biimpd 229 . . . . . 6 (𝜑 → (𝐴 ∈ dom 𝐴𝑉))
2621, 25biimtrrid 243 . . . . 5 (𝜑 → ([𝐴] ≠ ∅ → 𝐴𝑉))
2726necon1bd 2944 . . . 4 (𝜑 → (¬ 𝐴𝑉 → [𝐴] = ∅))
2820, 27jcad 512 . . 3 (𝜑 → (¬ 𝐴𝑉 → ((𝐹𝐴) = ∅ ∧ [𝐴] = ∅)))
29 eqtr3 2752 . . 3 (((𝐹𝐴) = ∅ ∧ [𝐴] = ∅) → (𝐹𝐴) = [𝐴] )
3028, 29syl6 35 . 2 (𝜑 → (¬ 𝐴𝑉 → (𝐹𝐴) = [𝐴] ))
319, 30pm2.61d 179 1 (𝜑 → (𝐹𝐴) = [𝐴] )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  c0 4299  cmpt 5191  dom cdm 5641  cfv 6514   Er wer 8671  [cec 8672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-er 8674  df-ec 8676
This theorem is referenced by:  ercpbllem  17518  qusaddvallem  17521  qusgrp2  18997  frgpmhm  19702  frgpup3lem  19714  qusring2  20250  qusrhm  21193
  Copyright terms: Public domain W3C validator