Proof of Theorem divsfval
| Step | Hyp | Ref
| Expression |
| 1 | | ercpbl.v |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ 𝑊) |
| 2 | | ercpbl.r |
. . . . . 6
⊢ (𝜑 → ∼ Er 𝑉) |
| 3 | 2 | ecss 8793 |
. . . . 5
⊢ (𝜑 → [𝐴] ∼ ⊆ 𝑉) |
| 4 | 1, 3 | ssexd 5324 |
. . . 4
⊢ (𝜑 → [𝐴] ∼ ∈
V) |
| 5 | | eceq1 8784 |
. . . . 5
⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) |
| 6 | | ercpbl.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| 7 | 5, 6 | fvmptg 7014 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ [𝐴] ∼ ∈ V) →
(𝐹‘𝐴) = [𝐴] ∼ ) |
| 8 | 4, 7 | sylan2 593 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝜑) → (𝐹‘𝐴) = [𝐴] ∼ ) |
| 9 | 8 | expcom 413 |
. 2
⊢ (𝜑 → (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = [𝐴] ∼ )) |
| 10 | 6 | dmeqi 5915 |
. . . . . . . 8
⊢ dom 𝐹 = dom (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| 11 | 2 | ecss 8793 |
. . . . . . . . . . 11
⊢ (𝜑 → [𝑥] ∼ ⊆ 𝑉) |
| 12 | 1, 11 | ssexd 5324 |
. . . . . . . . . 10
⊢ (𝜑 → [𝑥] ∼ ∈
V) |
| 13 | 12 | ralrimivw 3150 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈
V) |
| 14 | | dmmptg 6262 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑉 [𝑥] ∼ ∈ V → dom
(𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = 𝑉) |
| 15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = 𝑉) |
| 16 | 10, 15 | eqtrid 2789 |
. . . . . . 7
⊢ (𝜑 → dom 𝐹 = 𝑉) |
| 17 | 16 | eleq2d 2827 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ 𝑉)) |
| 18 | 17 | notbid 318 |
. . . . 5
⊢ (𝜑 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐴 ∈ 𝑉)) |
| 19 | | ndmfv 6941 |
. . . . 5
⊢ (¬
𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) |
| 20 | 18, 19 | biimtrrdi 254 |
. . . 4
⊢ (𝜑 → (¬ 𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ∅)) |
| 21 | | ecdmn0 8794 |
. . . . . 6
⊢ (𝐴 ∈ dom ∼ ↔ [𝐴] ∼ ≠
∅) |
| 22 | | erdm 8755 |
. . . . . . . . 9
⊢ ( ∼ Er
𝑉 → dom ∼ =
𝑉) |
| 23 | 2, 22 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom ∼ = 𝑉) |
| 24 | 23 | eleq2d 2827 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∈ dom ∼ ↔ 𝐴 ∈ 𝑉)) |
| 25 | 24 | biimpd 229 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ dom ∼ → 𝐴 ∈ 𝑉)) |
| 26 | 21, 25 | biimtrrid 243 |
. . . . 5
⊢ (𝜑 → ([𝐴] ∼ ≠ ∅ →
𝐴 ∈ 𝑉)) |
| 27 | 26 | necon1bd 2958 |
. . . 4
⊢ (𝜑 → (¬ 𝐴 ∈ 𝑉 → [𝐴] ∼ =
∅)) |
| 28 | 20, 27 | jcad 512 |
. . 3
⊢ (𝜑 → (¬ 𝐴 ∈ 𝑉 → ((𝐹‘𝐴) = ∅ ∧ [𝐴] ∼ =
∅))) |
| 29 | | eqtr3 2763 |
. . 3
⊢ (((𝐹‘𝐴) = ∅ ∧ [𝐴] ∼ = ∅) →
(𝐹‘𝐴) = [𝐴] ∼ ) |
| 30 | 28, 29 | syl6 35 |
. 2
⊢ (𝜑 → (¬ 𝐴 ∈ 𝑉 → (𝐹‘𝐴) = [𝐴] ∼ )) |
| 31 | 9, 30 | pm2.61d 179 |
1
⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |