MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsfval Structured version   Visualization version   GIF version

Theorem divsfval 17469
Description: Value of the function in qusval 17464. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
Assertion
Ref Expression
divsfval (𝜑 → (𝐹𝐴) = [𝐴] )
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem divsfval
StepHypRef Expression
1 ercpbl.v . . . . 5 (𝜑𝑉𝑊)
2 ercpbl.r . . . . . 6 (𝜑 Er 𝑉)
32ecss 8683 . . . . 5 (𝜑 → [𝐴] 𝑉)
41, 3ssexd 5266 . . . 4 (𝜑 → [𝐴] ∈ V)
5 eceq1 8671 . . . . 5 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
6 ercpbl.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
75, 6fvmptg 6932 . . . 4 ((𝐴𝑉 ∧ [𝐴] ∈ V) → (𝐹𝐴) = [𝐴] )
84, 7sylan2 593 . . 3 ((𝐴𝑉𝜑) → (𝐹𝐴) = [𝐴] )
98expcom 413 . 2 (𝜑 → (𝐴𝑉 → (𝐹𝐴) = [𝐴] ))
106dmeqi 5851 . . . . . . . 8 dom 𝐹 = dom (𝑥𝑉 ↦ [𝑥] )
112ecss 8683 . . . . . . . . . . 11 (𝜑 → [𝑥] 𝑉)
121, 11ssexd 5266 . . . . . . . . . 10 (𝜑 → [𝑥] ∈ V)
1312ralrimivw 3125 . . . . . . . . 9 (𝜑 → ∀𝑥𝑉 [𝑥] ∈ V)
14 dmmptg 6195 . . . . . . . . 9 (∀𝑥𝑉 [𝑥] ∈ V → dom (𝑥𝑉 ↦ [𝑥] ) = 𝑉)
1513, 14syl 17 . . . . . . . 8 (𝜑 → dom (𝑥𝑉 ↦ [𝑥] ) = 𝑉)
1610, 15eqtrid 2776 . . . . . . 7 (𝜑 → dom 𝐹 = 𝑉)
1716eleq2d 2814 . . . . . 6 (𝜑 → (𝐴 ∈ dom 𝐹𝐴𝑉))
1817notbid 318 . . . . 5 (𝜑 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐴𝑉))
19 ndmfv 6859 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
2018, 19biimtrrdi 254 . . . 4 (𝜑 → (¬ 𝐴𝑉 → (𝐹𝐴) = ∅))
21 ecdmn0 8684 . . . . . 6 (𝐴 ∈ dom ↔ [𝐴] ≠ ∅)
22 erdm 8642 . . . . . . . . 9 ( Er 𝑉 → dom = 𝑉)
232, 22syl 17 . . . . . . . 8 (𝜑 → dom = 𝑉)
2423eleq2d 2814 . . . . . . 7 (𝜑 → (𝐴 ∈ dom 𝐴𝑉))
2524biimpd 229 . . . . . 6 (𝜑 → (𝐴 ∈ dom 𝐴𝑉))
2621, 25biimtrrid 243 . . . . 5 (𝜑 → ([𝐴] ≠ ∅ → 𝐴𝑉))
2726necon1bd 2943 . . . 4 (𝜑 → (¬ 𝐴𝑉 → [𝐴] = ∅))
2820, 27jcad 512 . . 3 (𝜑 → (¬ 𝐴𝑉 → ((𝐹𝐴) = ∅ ∧ [𝐴] = ∅)))
29 eqtr3 2751 . . 3 (((𝐹𝐴) = ∅ ∧ [𝐴] = ∅) → (𝐹𝐴) = [𝐴] )
3028, 29syl6 35 . 2 (𝜑 → (¬ 𝐴𝑉 → (𝐹𝐴) = [𝐴] ))
319, 30pm2.61d 179 1 (𝜑 → (𝐹𝐴) = [𝐴] )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  c0 4286  cmpt 5176  dom cdm 5623  cfv 6486   Er wer 8629  [cec 8630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-er 8632  df-ec 8634
This theorem is referenced by:  ercpbllem  17470  qusaddvallem  17473  qusgrp2  18955  frgpmhm  19662  frgpup3lem  19674  qusring2  20237  qusrhm  21201
  Copyright terms: Public domain W3C validator